Related Articles
High baseline levels of PD-L1 reduce the heterogeneity of immune checkpoint signature and sensitize anti-PD1 therapy in lung and colorectal cancers
Immune checkpoint blockade (ICB) therapy only induces durable responses in a subset of cancer patients. The underlying mechanisms of such selective efficacy remain largely unknown. By analyzing the expression profiles of immune checkpoint molecules in different statuses of murine tumors, we found that tumor progression generally randomly upregulated multiple immune checkpoints, thus increased the Heterogeneity of Immune checkpoint Signature (HIS) and resulted in immunotherapeutic resistance. Interestingly, overexpressing one pivotal immune checkpoint in a tumor hindered the upregulation of a majority of other immune checkpoint genes during tumor progression via suppressing interferon γ, resulting in HIS-low. Indeed, PD-L1 high-expression sensitized baseline large tumors to anti-PD1 therapy without altering the sensitivity of baseline small tumors. In line with these preclinical results, a retrospective analysis of a phase III study involving patients with non-small cell lung cancer (NSCLC) revealed that PD-L1 tumor proportion score (TPS) ≥ 50% more reliably predicted therapeutic response in NSCLC patients with baseline tumor volume (BTV)-large compared to patients with BTV-small. Notably, TPS combined with BTV significantly improved the predictive accuracy. Collectively, the data suggest that HIS reflects the dynamic features of tumor immune evasion and dictates the selective efficacy of ICB in a tumor size-dependent manner, providing a potential novel strategy to improve precision ICB. These findings highlight the application of ICB to earlier stages of cancer patients. The integration of PD-L1 with BTV may immediately improve patient stratification and prediction performance in the clinic.
Pathogenesis of aquatic bird bornavirus 1 in turkeys of different age
Aquatic bird bornavirus 1 (ABBV1), an orthobornavirus in the family Bornaviridae, displays a broad host range among avian species, including poultry. The pathogenesis of orthobornaviruses, at least in mammals and psittacines, appears to be mediated by the host immune response against the infected nervous tissue, with younger animals showing a milder disease due to immune tolerance. Here, we tested the ability of ABBV1 to infect domestic turkeys (Meleagris gallopavo), with a focus on evaluating the impact of age at infection. Cohorts of 6-week-old (old) and day-old (young) male turkeys were divided into virus-inoculated and control groups, and kept for up to 12 weeks. Results showed that turkeys of both ages were susceptible to ABBV1 infection by intramuscular administration, following a centripetal and limited centrifugal spread, although infection appeared delayed in old compared to young birds. Notably, only young turkeys developed clinical signs and more frequent inflammation of the central nervous system, indicating that infection at a very early age is unlikely to induce tolerance to ABBV1 infection.
Molecular characterization of mixed-histology endometrial carcinoma provides prognostic and therapeutic value over morphologic findings
We performed molecular analysis of a single-institution cohort of clinically diagnosed mixed-histology endometrial carcinoma (MEC). A gynecologic pathologist confirmed that 72 cases met diagnostic criteria for MEC based on WHO 2020 guidelines, and these were molecularly classified using both a DNA-based and histologic approach. Tumors were classified as: POLE-mutated (13.9%), microsatellite instability (MSI)-high/mismatch repair deficient (MMRd) (26.4%), TP53/p53 abnormal (p53abnl) (48.6%), no specific molecular profile (NSMP) (11.1%). Recurrence risk significantly differed based upon molecular class, but not histology. 44% of MEC cases had a HER2 IHC score of 2–3+, and this was not limited to p53abnl tumors. Transcriptional analysis demonstrated 93 differentially expressed genes between p53abnl and NSMP tumors, including many associated with the innate immune response and DNA damage repair. While p53abnl and NSMP tumors have similarly poor outcomes, transcriptome analysis revealed biologic differences that could impact targeted therapeutics in this high-risk group.
Breast cancer: pathogenesis and treatments
Breast cancer, characterized by unique epidemiological patterns and significant heterogeneity, remains one of the leading causes of malignancy-related deaths in women. The increasingly nuanced molecular subtypes of breast cancer have enhanced the comprehension and precision treatment of this disease. The mechanisms of tumorigenesis and progression of breast cancer have been central to scientific research, with investigations spanning various perspectives such as tumor stemness, intra-tumoral microbiota, and circadian rhythms. Technological advancements, particularly those integrated with artificial intelligence, have significantly improved the accuracy of breast cancer detection and diagnosis. The emergence of novel therapeutic concepts and drugs represents a paradigm shift towards personalized medicine. Evidence suggests that optimal diagnosis and treatment models tailored to individual patient risk and expected subtypes are crucial, supporting the era of precision oncology for breast cancer. Despite the rapid advancements in oncology and the increasing emphasis on the clinical precision treatment of breast cancer, a comprehensive update and summary of the panoramic knowledge related to this disease are needed. In this review, we provide a thorough overview of the global status of breast cancer, including its epidemiology, risk factors, pathophysiology, and molecular subtyping. Additionally, we elaborate on the latest research into mechanisms contributing to breast cancer progression, emerging treatment strategies, and long-term patient management. This review offers valuable insights into the latest advancements in Breast Cancer Research, thereby facilitating future progress in both basic research and clinical application.
The radiogenomic and spatiogenomic landscapes of glioblastoma and their relationship to oncogenic drivers
Glioblastoma is a highly heterogeneous brain tumor, posing challenges for precision therapies and patient stratification in clinical trials. Understanding how genetic mutations influence tumor imaging may improve patient management and treatment outcomes. This study investigates the relationship between imaging features, spatial patterns of tumor location, and genetic alterations in IDH-wildtype glioblastoma, as well as the likely sequence of mutational events.
Responses