Related Articles
One-carbon metabolism is distinct metabolic signature for proliferative intermediate exhausted T cells of ICB-resistant cancer patients
One-carbon metabolism (1CM) has been reported to promote cancer progression across various malignancies. While 1CM is critical for cell proliferation by enhancing nucleotide synthesis, its physiological roles within different cell types in the tumor immune microenvironment (TIME) still remain unclear. In this study, we analyzed bulk-RNA sequencing and single-cell RNA sequencing (scRNA-seq) data from lung adenocarcinoma (LUAD) patients to elucidate the functional roles of 1CM within the TIME. Moreover, we examined scRNA-seq data from patients treated with immunotherapy across various cancers, including LUAD, glioblastoma, renal cell carcinoma, colorectal cancer, and triple-negative breast cancer. Compared to other cell types, 1CM gene profiles are significantly enriched in a specific subset of T cells. Intriguingly, these high-1CM T cells are identified as proliferative intermediate exhausted T cells (Texint). Furthermore, these proliferative Texint received the most robust CD137 signaling. Consistently, analysis of scRNA-seq data from LUAD patients undergoing anti-PD1 immunotherapy demonstrated that proliferative Texint exhibited higher 1CM scores and increased CD137 signaling. This observation was particularly pronounced in non-responders to immunotherapy, where the Texint population was significantly expanded. We further established that 1CM is a prominent signaling pathway in proliferative Texint in patients resistant to immunotherapy across multiple cancer types. Collectively, we identify CD137 signaling as a distinctive pathway in proliferative Texint of LUAD patients who do not respond to immunotherapy. These findings propose that targeting 1CM may represent a novel therapeutic strategy to enhance the efficacy of immunotherapy by mitigating Texint proliferation in diverse cancers.
GATA2 mutated allele specific expression is associated with a hyporesponsive state of HSC in GATA2 deficiency syndrome
GATA2 germline mutations lead to a syndrome characterized by immunodeficiency, vascular disorders and myeloid malignancies. To elucidate how these mutations affect hematopoietic homeostasis, we created a knock-in mouse model expressing the recurrent Gata2 R396Q missense mutation. Employing molecular and functional approaches, we investigated the mutation’s impact on hematopoiesis, revealing significant alterations in the hematopoietic stem and progenitor (HSPC) compartment in young age. These include increased LT-HSC numbers, reduced self-renewal potential, and impaired response to acute inflammatory stimuli. The mature HSPC compartment was primarily affected at the CMP sub-population level. In the mutant LT-HSC population, we identified an aberrant subpopulation strongly expressing CD150, resembling aging, but occurring prematurely. This population showed hyporesponsiveness, accumulated over time, and exhibited allele-specific expression (ASE) favoring the mutated Gata2 allele, also observed in GATA2 mutated patients. Our findings reveal the detrimental impact of a Gata2 recurrent missense mutation on the HSC compartment contributing to its functional decline. Defects in the CMP mature compartment, along with the inflammatory molecular signature, explain the loss of heterogeneity in HPC compartment observed in patients. Finally, our study provides a valuable model that recapitulates the ASE-related pathology observed in GATA2 deficiency, shedding light on the mechanisms contributing to the disease’s natural progression.
Cannabidiol reshapes the gut microbiome to promote endurance exercise in mice
Cannabidiol (CBD), a nonpsychoactive compound from Cannabis, has various bioactive functions in humans and animals. Evidence suggests that CBD promotes muscle injury recovery in athletes, but whether and how CBD improves endurance performance remains unclear. Here we investigated the effects of CBD treatment on exercise performance in mice and assessed whether this effect involves the gut microbiome. CBD administration significantly increased treadmill running performance in mice, accompanied by an increase in oxidative myofiber composition. CBD also increased mitochondrial biogenesis and the expression of associated genes such as PGC-1α, phosphorylated CREB and AMPK in muscle tissue. Interestingly, CBD altered the composition of the gut microbiome, and antibiotic treatment reduced the muscle endurance-enhancing effects of CBD and mitochondrial biogenesis. We isolated Bifidobacterium animalis, a microbe increased by CBD administration, and named it KBP-1. Treatment with B. animalis KBP-1 in mice resulted in improved running performance. Whole-genome analysis revealed that B. animalis KBP-1 presented high expression of genes involved in branched-chain amino acid biosynthesis, expression of branched-chain amino acid release pumps and metabolism of lactic acid. In summary, our study identified CBD and B. animalis KBP-1 as potential endurance exercise-promoting agents.
Influence of two different printing methods on the accuracy of full-guided implant insertion – a laboratory study in undergraduate dental students
The aim of the present study was to compare the accuracy of fully guided implant insertion in vitro achieved by two fabrication methods in a cohort of undergraduates. We hypothesized that both methods achieve a comparable accuracy.
Temporal profiling of human lymphoid tissues reveals coordinated defense against viral challenge
Adaptive immunity is generated in lymphoid organs, but how these structures defend themselves during infection in humans is unknown. The nasal epithelium is a major site of viral entry, with adenoid nasal-associated lymphoid tissue (NALT) generating early adaptive responses. In the present study, using a nasopharyngeal biopsy technique, we investigated longitudinal immune responses in NALT after a viral challenge, using severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection as a natural experimental model. In acute infection, infiltrating monocytes formed a subepithelial and perifollicular shield, recruiting neutrophil extracellular trap-forming neutrophils, whereas tissue macrophages expressed pro-repair molecules during convalescence to promote the restoration of tissue integrity. Germinal center B cells expressed antiviral transcripts that inversely correlated with fate-defining transcription factors. Among T cells, tissue-resident memory CD8 T cells alone showed clonal expansion and maintained cytotoxic transcriptional programs into convalescence. Together, our study provides unique insights into how human nasal adaptive immune responses are generated and sustained in the face of viral challenge.
Responses