Related Articles

Free mobility across group boundaries promotes intergroup cooperation

Group cooperation is a cornerstone of human society, enabling achievements that surpass individual capabilities. However, groups also define and restrict who benefits from cooperative actions and who does not, raising the question of how to foster cooperation across group boundaries. This study investigates the impact of voluntary mobility across group boundaries on intergroup cooperation. Participants, organized into two groups, decided whether to create benefits for themselves, group members, or everyone. In each round, they were paired with another participant and could reward the other’s actions during an ‘enforcement stage’, allowing for indirect reciprocity. In line with our preregistered hypothesis, when participants interacted only with in-group members, indirect reciprocity enforced group cooperation, while intergroup cooperation declined. Conversely, higher intergroup cooperation emerged when participants were forced to interact solely with out-group members. Crucially, in the free-mobility treatment – where participants could choose whether to meet an in-group or an out-group member in the enforcement stage – intergroup cooperation was significantly higher than when participants were forced to interact only with in-group members, even though most participants endogenously chose to interact with in-group members. A few ‘mobile individuals’ were sufficient to enforce intergroup cooperation by selectively choosing out-group members, enabling indirect reciprocity to transcend group boundaries. These findings highlight the importance of free intergroup mobility for overcoming the limitations of group cooperation.

Global self-organization of solute induced by ion irradiation in polycrystalline alloys

Most materials are brought into nonequilibrium states during processing and during their service life. Materials for nuclear and space applications, for instance, are continuously exposed to energetic particle irradiation, which is often detrimental to materials’ performance. Here we demonstrate, however, that sustained irradiation can induce self-organization of the microstructure of polycrystalline alloys into steady-state patterns and, in turn, improve their radiation resistance. Using an Al −1.5 at.% Sb alloy as a model system, we show using transmission electron microscopy and atom probe tomography that, for nanocrystalline thin films irradiated at 75 °C with 2 MeV Ti ions to large doses, the microstructure consists of finite-size, self-organized AlSb nanoprecipitates inside the grains and along the grain boundaries. Furthermore, this steady state is independent of the initial microstructure, thus self-healing. Phase field modeling is employed to construct a steady-state phase diagram and extend the experimental results to other alloy systems and microstructures.

Edge states with hidden topology in spinner lattices

Symmetries – whether explicit, latent, or hidden – are fundamental to understanding topological materials. This work introduces a prototypical spring-mass model that extends beyond established canonical models, revealing topological edge states with distinct profiles at opposite edges. These edge states originate from hidden symmetries that become apparent only in deformation coordinates, as opposed to the conventional displacement coordinates used for bulk-boundary correspondence. Our model, realized through the intricate connectivity of a spinner chain, demonstrates experimentally distinct edge states at opposite ends. By extending this framework to two dimensions, we explore the conditions required for such edge waves and their hidden symmetry in deformation coordinates. We also show that these edge states are robust against disorders that respect the hidden symmetry. This research paves the way for advanced material designs with tailored boundary conditions and edge state profiles, offering potential applications in fields such as photonics, acoustics, and mechanical metamaterials.

Observation of non-Hermitian topological synchronization

Non-Hermitian topology plays a pivotal role in physical science and technology, exerting a profound impact across various scientific disciplines. Recently, the interplay between topological physics and nonlinear synchronization has aroused a great interest, leading to the emergence of an intriguing phenomenon known as topological synchronization, wherein nonlinear oscillators at boundaries synchronize through topological boundary states. To the best of our knowledge, however, this phenomenon has yet to be experimentally validated, and the study of non-Hermitian topological synchronization remains in its infancy. Here, we investigate non-Hermitian topological synchronization, uncovering the influence of system size and boundary site geometry on synchronization effects. We demonstrate that simply varying the lattice size allows transitions between three distinct types of non-Hermitian topological synchronization. Furthermore, we reveal that the geometry of the boundary sites introduces a degree of freedom, enabling the control over the configuration of non-Hermitian topological synchronization. These findings are experimentally validated using non-Hermitian nonlinear topological circuits. This work significantly broadens the scope of nonlinear non-Hermitian topological physics and opens new avenues for the application of synchronization phenomena in future technologies.

Scanning vortex microscopy reveals thickness-dependent pinning nano-network in superconducting niobium films

The presence of quantum vortices determines the electromagnetic response of superconducting materials and devices. Controlling the motion of vortices and their pinning on intrinsic and artificial defects is therefore essential for further development of superconducting electronics. Here we take advantage of the attractive force between a magnetic tip of the Magnetic Force Microscope and a single quantum vortex to spatially map the pinning force inside 50–240 nm thick magnetron-sputtered niobium films, widely used in various applications. The revealed pinning nanonetwork is related to the thickness-dependent granular structure of the films as well as to the characteristic microscopic scales of superconductivity. Our approach is general and can be directly applied to other type-II granular superconducting materials and nanodevices.

Responses

Your email address will not be published. Required fields are marked *