Extended amygdala corticotropin-releasing hormone neurons regulate sexually dimorphic changes in pair bond formation following social defeat in prairie voles (Microtus ochrogaster)

Related Articles

Separate orexigenic hippocampal ensembles shape dietary choice by enhancing contextual memory and motivation

The hippocampus (HPC) has emerged as a critical player in the control of food intake, beyond its well-known role in memory. While previous studies have primarily associated the HPC with food intake inhibition, recent research suggests a role in appetitive processes. Here we identified spatially distinct neuronal populations within the dorsal HPC (dHPC) that respond to either fats or sugars, potent natural reinforcers that contribute to obesity development. Using activity-dependent genetic capture of nutrient-responsive dHPC neurons, we demonstrate a causal role of both populations in promoting nutrient-specific intake through different mechanisms. Sugar-responsive neurons encoded spatial memory for sugar location, whereas fat-responsive neurons selectively enhanced the preference and motivation for fat intake. Importantly, stimulation of either nutrient-responsive dHPC neurons increased food intake, while ablation differentially impacted obesogenic diet consumption and prevented diet-induced weight gain. Collectively, these findings uncover previously unknown orexigenic circuits underlying macronutrient-specific consumption and provide a foundation for developing potential obesity treatments.

Coding principles and mechanisms of serotonergic transmission modes

Serotonin-mediated intercellular communication has been implicated in myriad human behaviors and diseases, yet how serotonin communicates and how the communication is regulated remain unclear due to limitations of available monitoring tools. Here, we report a method multiplexing genetically encoded sensor-based imaging and fast-scan cyclic voltammetry, enabling simultaneous recordings of synaptic, perisynaptic, proximate and distal extrasynaptic serotonergic transmission. Employing this method alongside a genetically encoded sensor-based image analysis program (GESIAP), we discovered that heterogeneous firing patterns of serotonergic neurons create various transmission modes in the mouse raphe nucleus and amygdala, encoding information of firing pulse frequency, number, and synchrony using neurotransmitter quantity, releasing synapse count, and synaptic and/or volume transmission. During tonic and low-frequency phasic activities, serotonin is confined within synaptic clefts due to efficient retrieval by perisynaptic transporters, mediating synaptic transmission modes. Conversely, during high-frequency, especially synchronized phasic activities, or when transporter inhibition, serotonin may surpass transporter capacity, and escape synaptic clefts through 1‒3 outlet channels, leading to volume transmission modes. Our results elucidate a mechanism of how channeled synaptic enclosures, synaptic properties, and transporters collaborate to define the coding principles of activity pattern-dependent serotonergic transmission modes.

Raptin, a sleep-induced hypothalamic hormone, suppresses appetite and obesity

Sleep deficiency is associated with obesity, but the mechanisms underlying this connection remain unclear. Here, we identify a sleep-inducible hypothalamic protein hormone in humans and mice that suppresses obesity. This hormone is cleaved from reticulocalbin-2 (RCN2), and we name it Raptin. Raptin release is timed by the circuit from vasopressin-expressing neurons in the suprachiasmatic nucleus to RCN2-positive neurons in the paraventricular nucleus. Raptin levels peak during sleep, which is blunted by sleep deficiency. Raptin binds to glutamate metabotropic receptor 3 (GRM3) in neurons of the hypothalamus and stomach to inhibit appetite and gastric emptying, respectively. Raptin-GRM3 signaling mediates anorexigenic effects via PI3K-AKT signaling. Of note, we verify the connections between deficiencies in the sleeping state, impaired Raptin release, and obesity in patients with sleep deficiency. Moreover, humans carrying an RCN2 nonsense variant present with night eating syndrome and obesity. These data define a unique hormone that suppresses food intake and prevents obesity.

Historical loss weakens competitive behavior by remodeling ventral hippocampal dynamics

Competitive interactions are pervasive within biological populations, where individuals engage in fierce disputes over vital resources for survival. Before the establishment of a social hierarchy within the population, this competition becomes even more intense. Historical experiences of competition significantly influence the competitive performance; individuals with a history of persistent loss are less likely to initiate attacks or win escalated contests. However, it remains unclear how historical loss directly affects the evolution of mental processes during competition and alters responses to ongoing competitive events. Here, we utilized a naturalistic food competition paradigm to track the competitive patterns of mutually unfamiliar competitors and found that a history of loss leads to reduced competitive performance. By tracking the activity of ventral hippocampal neuron ensembles, we identified clusters of neurons that responded differently to behavioral events during the competition, with their reactivity modulated by previous losses. Using a Recurrent Switch Linear Dynamical System (rSLDS), we revealed rotational dynamics in the ventral hippocampus (vHPC) during food competition, where different discrete internal states corresponded to different behavioral strategies. Moreover, historical loss modulates competitive behavior by remodeling the characteristic attributes of this rotational dynamic system. Finally, we found that an evolutionarily conserved glutamate receptor-associated protein, glutamate receptor-associated protein 1 (Grina), plays an important role in this process. By continuously monitoring the association between the attributes of the dynamic system and competitiveness, we found that restoring Grina expression effectively reversed the impact of historical loss on competitive performance. Together, our study reveals the rotational dynamics in the ventral hippocampus during competition and elucidates the underlying mechanisms through which historical loss shapes these processes.

Responses

Your email address will not be published. Required fields are marked *