Related Articles
Central amygdala somatostatin neurons modulate stress-induced sleep-onset insomnia
Sleep-onset insomnia, characterized by difficulty falling asleep, is linked to increased health risks. Previous studies have shown that the central amygdala (CeA) plays a crucial role in stress regulation, with the somatostatin neurons in the CeA (CeASST+) involved in adaptive stress responses. However, the role of CeASST+ neurons in stress-induced sleep-onset insomnia remains unclear. In this study, we found that the activity of CeASST+ neurons is closely associated with stressful events using fiber photometry in mice. Acute optogenetic activation of CeASST+ neurons induced a rapid transition from non-rapid eye movement (NREM) sleep to wakefulness. Semi-chronic optogenetic and chemogenetic activation of CeASST+ neurons led to prolonged sleep-onset latency and increased wakefulness. Chemogenetic inhibition of these neurons ameliorated sleep-onset insomnia induced by stressful stimuli, but did not affect sleep-wake behavior under physiological conditions. Collectively, our results suggested that CeASST+ neurons are a key neural substrate for modulating stress-induced sleep-onset insomnia, without influencing physiological sleep. These findings highlight CeASST+ neurons as a promising target for treating stress-related sleep-onset insomnia in clinical practice.
Historical loss weakens competitive behavior by remodeling ventral hippocampal dynamics
Competitive interactions are pervasive within biological populations, where individuals engage in fierce disputes over vital resources for survival. Before the establishment of a social hierarchy within the population, this competition becomes even more intense. Historical experiences of competition significantly influence the competitive performance; individuals with a history of persistent loss are less likely to initiate attacks or win escalated contests. However, it remains unclear how historical loss directly affects the evolution of mental processes during competition and alters responses to ongoing competitive events. Here, we utilized a naturalistic food competition paradigm to track the competitive patterns of mutually unfamiliar competitors and found that a history of loss leads to reduced competitive performance. By tracking the activity of ventral hippocampal neuron ensembles, we identified clusters of neurons that responded differently to behavioral events during the competition, with their reactivity modulated by previous losses. Using a Recurrent Switch Linear Dynamical System (rSLDS), we revealed rotational dynamics in the ventral hippocampus (vHPC) during food competition, where different discrete internal states corresponded to different behavioral strategies. Moreover, historical loss modulates competitive behavior by remodeling the characteristic attributes of this rotational dynamic system. Finally, we found that an evolutionarily conserved glutamate receptor-associated protein, glutamate receptor-associated protein 1 (Grina), plays an important role in this process. By continuously monitoring the association between the attributes of the dynamic system and competitiveness, we found that restoring Grina expression effectively reversed the impact of historical loss on competitive performance. Together, our study reveals the rotational dynamics in the ventral hippocampus during competition and elucidates the underlying mechanisms through which historical loss shapes these processes.
Sensory input, sex and function shape hypothalamic cell type development
Mammalian behaviour and physiology undergo major changes in early life. Young animals rely on conspecifics to meet their needs and start showing nutritional independence and sex-specific social interactions at weaning and puberty, respectively. How neuronal populations regulating homeostatic functions and social behaviours develop during these transitions remains unclear. We used paired transcriptomic and chromatin accessibility profiling to examine the developmental trajectories of neuronal populations in the hypothalamic preoptic region, where cell types with key roles in physiological and behavioural control have been identified1,2,3,4,5,6. These data show a marked diversity of developmental trajectories shaped by the sex of the animal, and the location and behavioural or physiological function of the corresponding cell types. We identify key stages of preoptic development, including early diversification, perinatal emergence of sex differences, postnatal maturation and refinement of signalling networks, and nonlinear transcriptional changes accelerating at the time of weaning and puberty. We assessed preoptic development in various sensory mutants and find a major role for vomeronasal sensing in the timing of preoptic cell type maturation. These results provide new insights into the development of neurons controlling homeostatic functions and social behaviours and lay ground for examining the dynamics of these functions in early life.
Determinants of consumer intention to use autonomous delivery vehicles: based on the planned behavior theory and normative activation model
Autonomous delivery vehicles (ADVs) that provide contactless services have attracted much academic and practical attention in China in recent years. Despite this, there is a lack of in-depth research on what motivates customers to embrace ADVs. The study integrates the theory of planned behavior (TPB) and normative activation model (NAM) and explores how environmental factors, situational factors, and individual factors affect original TPB constructs and ultimately consumers’ intention to use ADVs. Structural equation modeling was performed on survey data of 561 Chinese consumers through an online sampling platform. The results show that among the factors affecting consumer intention, word-of-mouth recommendations have the greatest impact, followed by perceived enjoyment, COVID-19 risk, ascription of responsibility, subjective norm, attitude, and perceived behavioral control. The results not only make important theoretical contributions to the technology acceptance fields but also provide helpful references to logistics enterprises, ADVs technology providers, and policymakers.
Integrating single-cell RNA and T cell/B cell receptor sequencing with mass cytometry reveals dynamic trajectories of human peripheral immune cells from birth to old age
A comprehensive understanding of the evolution of the immune landscape in humans across the entire lifespan at single-cell transcriptional and protein levels, during development, maturation and senescence is currently lacking. We recruited a total of 220 healthy volunteers from the Shanghai Pudong Cohort (NCT05206643), spanning 13 age groups from 0 to over 90 years, and profiled their peripheral immune cells through single-cell RNA-sequencing coupled with single T cell and B cell receptor sequencing, high-throughput mass cytometry, bulk RNA-sequencing and flow cytometry validation experiments. We revealed that T cells were the most strongly affected by age and experienced the most intensive rewiring in cell–cell interactions during specific age. Different T cell subsets displayed different aging patterns in both transcriptomes and immune repertoires; examples included GNLY+CD8+ effector memory T cells, which exhibited the highest clonal expansion among all T cell subsets and displayed distinct functional signatures in children and the elderly; and CD8+ MAIT cells, which reached their peaks of relative abundance, clonal diversity and antibacterial capability in adolescents and then gradually tapered off. Interestingly, we identified and experimentally verified a previously unrecognized ‘cytotoxic’ B cell subset that was enriched in children. Finally, an immune age prediction model was developed based on lifecycle-wide single-cell data that can evaluate the immune status of healthy individuals and identify those with disturbed immune functions. Our work provides both valuable insights and resources for further understanding the aging of the immune system across the whole human lifespan.
Responses