Related Articles

Dynamic effects of psychiatric vulnerability, loneliness and isolation on distress during the first year of the COVID-19 pandemic

The COVID-19 pandemic’s impact on mental health is challenging to quantify because pre-existing risk, disease burden and public policy varied across individuals, time and regions. Longitudinal, within-person analyses can determine whether pandemic-related changes in social isolation impacted mental health. We analyzed time-varying associations between psychiatric vulnerability, loneliness, psychological distress and social distancing in a US-based study during the first year of the pandemic. We surveyed 3,655 participants about psychological health and COVID-19-related circumstances every 2 weeks for 6 months. We combined self-reports with regional social distancing estimates and a classifier that predicted probability of psychiatric diagnosis at enrollment. Loneliness and psychiatric vulnerability both impacted psychological distress. Loneliness and distress were also linked to social isolation and stress associated with distancing, and psychiatric vulnerability shaped how regional distancing affected loneliness across time. Public health policies should address loneliness when encouraging social distancing, particularly in those at risk for psychiatric conditions.

Energy metabolism in health and diseases

Energy metabolism is indispensable for sustaining physiological functions in living organisms and assumes a pivotal role across physiological and pathological conditions. This review provides an extensive overview of advancements in energy metabolism research, elucidating critical pathways such as glycolysis, oxidative phosphorylation, fatty acid metabolism, and amino acid metabolism, along with their intricate regulatory mechanisms. The homeostatic balance of these processes is crucial; however, in pathological states such as neurodegenerative diseases, autoimmune disorders, and cancer, extensive metabolic reprogramming occurs, resulting in impaired glucose metabolism and mitochondrial dysfunction, which accelerate disease progression. Recent investigations into key regulatory pathways, including mechanistic target of rapamycin, sirtuins, and adenosine monophosphate-activated protein kinase, have considerably deepened our understanding of metabolic dysregulation and opened new avenues for therapeutic innovation. Emerging technologies, such as fluorescent probes, nano-biomaterials, and metabolomic analyses, promise substantial improvements in diagnostic precision. This review critically examines recent advancements and ongoing challenges in metabolism research, emphasizing its potential for precision diagnostics and personalized therapeutic interventions. Future studies should prioritize unraveling the regulatory mechanisms of energy metabolism and the dynamics of intercellular energy interactions. Integrating cutting-edge gene-editing technologies and multi-omics approaches, the development of multi-target pharmaceuticals in synergy with existing therapies such as immunotherapy and dietary interventions could enhance therapeutic efficacy. Personalized metabolic analysis is indispensable for crafting tailored treatment protocols, ultimately providing more accurate medical solutions for patients. This review aims to deepen the understanding and improve the application of energy metabolism to drive innovative diagnostic and therapeutic strategies.

Tissue macrophages: origin, heterogenity, biological functions, diseases and therapeutic targets

Macrophages are immune cells belonging to the mononuclear phagocyte system. They play crucial roles in immune defense, surveillance, and homeostasis. This review systematically discusses the types of hematopoietic progenitors that give rise to macrophages, including primitive hematopoietic progenitors, erythro-myeloid progenitors, and hematopoietic stem cells. These progenitors have distinct genetic backgrounds and developmental processes. Accordingly, macrophages exhibit complex and diverse functions in the body, including phagocytosis and clearance of cellular debris, antigen presentation, and immune response, regulation of inflammation and cytokine production, tissue remodeling and repair, and multi-level regulatory signaling pathways/crosstalk involved in homeostasis and physiology. Besides, tumor-associated macrophages are a key component of the TME, exhibiting both anti-tumor and pro-tumor properties. Furthermore, the functional status of macrophages is closely linked to the development of various diseases, including cancer, autoimmune disorders, cardiovascular disease, neurodegenerative diseases, metabolic conditions, and trauma. Targeting macrophages has emerged as a promising therapeutic strategy in these contexts. Clinical trials of macrophage-based targeted drugs, macrophage-based immunotherapies, and nanoparticle-based therapy were comprehensively summarized. Potential challenges and future directions in targeting macrophages have also been discussed. Overall, our review highlights the significance of this versatile immune cell in human health and disease, which is expected to inform future research and clinical practice.

A mixed studies systematic review on the health and wellbeing effects, and underlying mechanisms, of online support groups for chronic conditions

This pre-registered systematic review aimed to examine whether online support groups affect the health and wellbeing of individuals with a chronic condition, and what mechanisms may influence such effects. In September 2024, literature searches were conducted across electronic databases (Medline, Embase, PsycInfo, Web of Science and Google Scholar), pre-publication websites (MedRxiv and PsyArXiv) and grey literature websites. Qualitative and quantitative studies were included if they explored the impact of online support groups on the health and wellbeing outcomes of individuals with a chronic condition. The Mixed Methods Appraisal Tool was used to appraise the quality of the included studies. In total 100 papers met the inclusion criteria with their findings presented in a thematic synthesis. Health and wellbeing outcomes were categorised as: physical health, mental health, quality of life, social wellbeing, behaviour and decision-making, and adjustment. Mechanisms reported in these studies related to exchanging support, sharing experiences, content expression, and social comparison. User and group characteristics were also explored. The included studies suggest that online support groups can have a positive impact on social wellbeing, behaviour, and adjustment, with inconclusive findings for physical health and quality of life. However, there is also the possibility of a negative effect on anxiety and distress, particularly when exposed to other group members’ difficult experiences. Research comparing different online group features, such as platforms, size, and duration is needed. In particular, future research should be experimental to overcome the limitations of some of the cross-sectional designs of the included studies. The review was funded by the National Institute for Health and Care Research Health Protection Research in Emergency Preparedness and Response. Pre-registration ID: CRD42023399258

Indirect non-linear effects of landscape patterns on vegetation growth in Kunming City

Urban greening is becoming an important strategy in improving urban ecosystem services and sustainability. Identifying the response of vegetation to urbanization and urban landscape patterns can help in planning for urban greening. Urbanization may lead to both direct and indirect effects on vegetation, and the indirect effects of urbanization on vegetation growth (UIE-VG) have been paid much attention recently in large scale. In this study, we investigated the spatiotemporal evolution of UIE-VG and the effects of landscape patterns on UIE-VG using the boosted regression tree model and remotely sensed data. An increase in average UIE-VG from 4 to 56% was found during urbanization of Kunming, the case study area in southwest China. However, UIE-VG exhibited high variations due to landscape pattern changes at the local scale. Overall, area-related and aggregation-related landscape metrics had greater effects on UIE-VG than the other metrics. The increase and aggregation of built-up land enhanced UIE-VG by 3.1–81.3% while the increase and aggregation of unused land and waterbodies reduced UIE-VG by 0.7–20.6%. Moreover, we found that the large and aggregated vegetation areas may mitigate the negative UIE-VG in low urbanization areas. Our findings have important implications for integrating urban landscape planning into sustainable urban greening strategies.

Responses

Your email address will not be published. Required fields are marked *