Related Articles
Suppressing astrocytic GABA transaminase enhances tonic inhibition and weakens hippocampal spatial memory
Pharmacological suppression of γ-aminobutyric acid (GABA) transaminase (GABA-T), the sole GABA-degrading enzyme and a potential therapeutic target for treating brain disorders such as epilepsy, increases not only phasic inhibition but also tonic inhibition. However, the specific cellular source, neuromodulatory effects and potential therapeutic benefits of this enhanced tonic inhibition remain unexplored due to the lack of cell-type-specific gene manipulation studies. Here we report that the increase in tonic GABA currents observed after GABA-T suppression is predominantly due to increased tonic GABA release from astrocytes rather than action-potential-dependent synaptic GABA spillover. General GABA-T knockdown (KD) by a short hairpin RNA considerably increased tonic GABA currents in dentate granule cells, thereby enhancing tonic inhibition. An astrocyte-specific rescue of GABA-T following general GABA-T KD normalized the elevated tonic GABA currents to near control levels. Tetrodotoxin-insensitive tonic GABA currents were significantly increased after general GABA-T KD, whereas tetrodotoxin-sensitive tonic GABA currents showed no significant increase, suggesting that this enhanced tonic inhibition is primarily action-potential independent. General GABA-T KD reduced the spike probability of granule cells and impaired dorsal hippocampus-dependent spatial memory, which were fully reversed by astrocyte-specific GABA-T rescue. These findings suggest that suppressing astrocytic GABA-T may be sufficient to influence the excitatory/inhibitory balance in the brain and associated behaviors. Our study implies that the therapeutic benefits of pharmacological GABA-T suppression may be largely attributed to the modulation of astrocytic GABA-T and its impact on tonic GABA release from astrocytes.
Chemogenetics with PSAM4-GlyR decreases excitability and epileptiform activity in epileptic hippocampus
Despite the availability of new drugs on the clinics in recent years, drug-resistant epilepsy remains an unresolved challenge for healthcare, and one-third of epilepsy patients remain refractory to anti-seizure medications. Gene therapy in experimental models has emerged as effective treatment targeting specific neuronal populations in the epileptogenic focus. When combined with an external chemical activator using chemogenetics, it also becomes an “on-demand” treatment. Here, we evaluate a targeted and specific chemogenetic therapy, the PSAM/PSEM system, which holds promise as a potential candidate for clinical application in treating drug-resistant epilepsy. We show that the inert ligand uPSEM817, which selectively activates the chloride-permeable channel PSAM4-GlyR, effectively reduces the number of depolarization-induced action potentials in vitro. This effect is likely due to the shunting of depolarizing currents, as evidenced by decreased membrane resistance in these cells. In organotypic slices, uPSEM817 decreased the number of bursts and peak amplitude of events of spontaneous epileptiform activity. Although administration of uPSEM817 in vivo did not significantly alter electrographic seizures in a male mouse model of temporal lobe epilepsy, it did demonstrate a strong trend toward reducing the frequency of interictal epileptiform discharges. These findings indicate that PSAM4-GlyR-based chemogenetics holds potential as an anti-seizure strategy, although further refinement is necessary to enhance its efficacy.
Multiomic quantification of the KRAS mutation dosage improves the preoperative prediction of survival and recurrence in patients with pancreatic ductal adenocarcinoma
Most cancer mutation profiling studies are laboratory-based and lack direct clinical application. For clinical use, it is necessary to focus on key genes and integrate them with relevant clinical variables. We aimed to evaluate the prognostic value of the dosage of the KRAS G12 mutation, a key pancreatic ductal adenocarcinoma (PDAC) variant and to investigate the biological mechanism of the prognosis associated with the dosage of the KRAS G12 mutation. In this retrospective cohort study, we analyzed 193 surgically treated patients with PDAC between 2009 and 2016. RNA, whole-exome, and KRAS-targeted sequencing data were used to estimate the dosage of the KRAS G12 mutant. Our prognostic scoring system included the mutation dosage from targeted sequencing ( > 0.195, 1 point), maximal tumor diameter at preoperative imaging ( > 20 mm, 1 point), and carbohydrate antigen 19-9 levels ( > 150 U/mL, 1 point). The KRAS mutation dosage exhibited comparable performance with clinical variables for survival prediction. High KRAS mutation dosages activated the cell cycle, leading to high mutation rates and poor prognosis. According to prognostic scoring systems that integrate mutation dosage with clinical factors, patients with 0 points had superior median overall survival of 97.0 months and 1-year, 3-year, and 5-year overall survival rates of 95.8%, 70.8%, and 66.4%, respectively. In contrast, patients with 3 points had worse median overall survival of only 16.0 months and 1-year, 3-year, and 5-year overall survival rates of 65.2%, 8.7%, and 8.7%, respectively. The incorporation of the KRAS G12 mutation dosage variable into prognostic scoring systems can improve clinical variable-based survival prediction, highlighting the feasibility of an integrated scoring system with clinical significance.
Ion channel traffic jams: the significance of trafficking deficiency in long QT syndrome
A well-balanced ion channel trafficking machinery is paramount for the normal electromechanical function of the heart. Ion channel variants and many drugs can alter the cardiac action potential and lead to arrhythmias by interfering with mechanisms like ion channel synthesis, trafficking, gating, permeation, and recycling. A case in point is the Long QT syndrome (LQTS), a highly arrhythmogenic disease characterized by an abnormally prolonged QT interval on ECG produced by variants and drugs that interfere with the action potential. Disruption of ion channel trafficking is one of the main sources of LQTS. We review some molecular pathways and mechanisms involved in cardiac ion channel trafficking. We highlight the importance of channelosomes and other macromolecular complexes in helping to maintain normal cardiac electrical function, and the defects that prolong the QT interval as a consequence of variants or the effect of drugs. We examine the concept of “interactome mapping” and illustrate by example the multiple protein–protein interactions an ion channel may undergo throughout its lifetime. We also comment on how mapping the interactomes of the different cardiac ion channels may help advance research into LQTS and other cardiac diseases. Finally, we discuss how using human induced pluripotent stem cell technology to model ion channel trafficking and its defects may help accelerate drug discovery toward preventing life-threatening arrhythmias. Advancements in understanding ion channel trafficking and channelosome complexities are needed to find novel therapeutic targets, predict drug interactions, and enhance the overall management and treatment of LQTS patients.
Breaking barriers: we need a multidisciplinary approach to tackle cancer drug resistance
Most cancer-related deaths result from drug-resistant disease(1,2). However, cancer drug resistance is not a primary focus in drug development. Effectively mitigating and treating drug-resistant cancer will require advancements in multiple fields, including early detection, drug discovery, and our fundamental understanding of cancer biology. Therefore, successfully tackling drug resistance requires an increasingly multidisciplinary approach. A recent workshop on cancer drug resistance, jointly organised by Cancer Research UK, the Rosetrees Trust, and the UKRI-funded Physics of Life Network, brought together experts in cell biology, physical sciences, computational biology, drug discovery, and clinicians to focus on these key challenges and devise interdisciplinary approaches to address them. In this perspective, we review the outcomes of the workshop and highlight unanswered research questions. We outline the emerging hallmarks of drug resistance and discuss lessons from the COVID-19 pandemic and antimicrobial resistance that could help accelerate information sharing and timely adoption of research discoveries into the clinic. We envisage that initiatives that drive greater interdisciplinarity will yield rich dividends in developing new ways to better detect, monitor, and treat drug resistance, thereby improving treatment outcomes for cancer patients.
Responses