Related Articles
Lipid metabolism: the potential therapeutic targets in glioblastoma
Glioblastoma is a highly malignant tumor of the central nervous system with a high mortality rate. The mechanisms driving glioblastoma onset and progression are complex, posing substantial challenges for developing precise therapeutic interventions to improve patient survival. Over a century ago, the discovery of the Warburg effect underscored the importance of abnormal glycolysis in tumors, marking a pivotal moment in cancer research. Subsequent studies have identified mitochondrial energy conversion as a fundamental driver of tumor growth. Recently, lipid metabolism has emerged as a critical factor in cancer cell survival, providing an alternative energy source. Research has shown that lipid metabolism is reprogrammed in glioblastoma, playing a vital role in shaping the biological behavior of tumor cells. In this review, we aim to elucidate the impact of lipid metabolism on glioblastoma tumorigenesis and explore potential therapeutic targets. Additionally, we provide insights into the regulatory mechanisms that govern lipid metabolism, emphasizing the critical roles of key genes and regulators involved in this essential metabolic process.
Chromobox protein homolog 7 suppresses the stem-like phenotype of glioblastoma cells by regulating the myosin heavy chain 9-NF-κB signaling pathway
Cancer stem cells (CSCs) are significant factors in the treatment resistance and recurrence of glioblastoma. Chromobox protein homolog 7 (CBX7) can inhibit the progression of various tumors, but its impact on the stem cell-like properties of glioblastoma cells remains unclear. Clinically, low levels of CBX7 are associated with poor prognosis and increased distant metastasis in glioblastoma patients, and this low expression is caused by methylation of the CBX7 promoter. Our current research indicates that CBX7 plays a key role in suppressing the stem-like phenotype of glioblastoma. In this study, through bioinformatics analysis, we found that CBX7 is the most significantly downregulated member of the CBX family in glioblastoma and is closely associated with the stem-like phenotype of glioblastoma cells. We show that CBX7 promotes the degradation of myosin heavy chain 9 (MYH9) protein through the ubiquitin-proteasome pathway via the polycomb repressive complex 1 (PRC1) and suppresses the stem-like phenotype of glioblastoma cells by inhibiting the nuclear factor kappa-B (NF-κB) signaling pathway. Furthermore, overexpression of MYH9 in glioblastoma cells reverses the inhibitory effects of CBX7 on migration, proliferation, invasion, and stemness of glioblastoma cells. In summary, CBX7 acts as a tumor suppressor by inhibiting the stem cell-like characteristics of glioblastoma. The CBX7-MYH9-NF-κB signaling axis may serve as a potential therapeutic target for glioblastoma.
Operating principles of interconnected feedback loops driving cell fate transitions
Interconnected feedback loops are prevalent across biological mechanisms, including cell fate transitions enabled by epigenetic mechanisms in carcinomas. However, the operating principles of these networks remain largely unexplored. Here, we identify numerous interconnected feedback loops implicated in cell lineage decisions, which we discover to be the hallmarks of lower- and higher-dimensional state space. We demonstrate that networks having higher centrality nodes have restricted state space while those with lower centrality nodes have higher dimensional state space. The topologically distinct networks with identical node or loop counts have different steady-state distributions, highlighting the crucial influence of network structure on emergent dynamics. Further, regardless of topology, networks with autoregulated nodes exhibit multiple steady states, thereby “liberating” network dynamics from absolute topological control. These findings unravel the design principles of multistable networks implicated in fate decisions and can have crucial implications in engineering or comprehending multi-fate decision circuits.
Zipper-interacting protein kinase mediates neuronal cell death and cognitive dysfunction in traumatic brain injury via regulating DEDD
Neuronal cell death is a causative process in traumatic brain injury (TBI)-induced structural and functional impairment of the central nervous system. However, the upstream trigger of TBI-induced neuronal loss and the underlying molecular pathways remain unclear. Zipper-interacting protein kinase (ZIPK) has been shown to be upregulated in Alzheimer’s disease and ischemic stroke and to play a role in cellular apoptosis, while its pathological significance in TBI has not been reported. Herein, we discovered for the first time that ZIPK expression was markedly elevated in neurons after TBI and that ZIPK caused massive neuronal apoptosis in peri-contusional brain regions. Zipk haploinsufficiency antagonized neuronal cell death and reversed several typical neuropathological changes induced by TBI. Mechanistically, we found that ZIPK affected neuronal viability by modulating death effector domain-containing DNA binding protein (DEDD) and caspase-3 pathway. Specifically, ZIPK could bind to and phosphorylate DEDD at the S9 residue, thus enhancing the stability of DEDD, and leading to the activation of caspase-3-mediated apoptotic cascade in neurons. The rescue of neuronal loss by ZIPK downregulation effectively alleviated TBI-induced behavioral deficits by preserving motor and cognitive abilities in vivo, supporting the decisive role of ZIPK dysregulation in TBI-associated neuronal dysfunctions by modulating neuronal survival. Furthermore, pharmacological suppression of ZIPK activity by a specific inhibitor prior to TBI protected neurons from brain injury-induced cell death and neuronal degeneration in vitro and in vivo by preventing DEDD upregulation and caspase-3 activation. In conclusion, our data reveal the essential contribution of ZIPK to TBI-induced neuronal cell death through the DEDD/caspase-3 cascade, and suggest the potential of targeting ZIPK as an effective strategy for treating TBI-related neuropathologies.
Molecular principles underlying aggressive cancers
Aggressive tumors pose ultra-challenges to drug resistance. Anti-cancer treatments are often unsuccessful, and single-cell technologies to rein drug resistance mechanisms are still fruitless. The National Cancer Institute defines aggressive cancers at the tissue level, describing them as those that spread rapidly, despite severe treatment. At the molecular, foundational level, the quantitative biophysics discipline defines aggressive cancers as harboring a large number of (overexpressed, or mutated) crucial signaling proteins in major proliferation pathways populating their active conformations, primed for their signal transduction roles. This comprehensive review explores highly aggressive cancers on the foundational and cell signaling levels, focusing on the differences between highly aggressive cancers and the more treatable ones. It showcases aggressive tumors as harboring massive, cancer-promoting, catalysis-primed oncogenic proteins, especially through certain overexpression scenarios, as predisposed aggressive tumor candidates. Our examples narrate strong activation of ERK1/2, and other oncogenic proteins, through malfunctioning chromatin and crosslinked signaling, and how they activate multiple proliferation pathways. They show the increased cancer heterogeneity, plasticity, and drug resistance. Our review formulates the principles underlying cancer aggressiveness on the molecular level, discusses scenarios, and describes drug regimen (single drugs and drug combinations) for PDAC, NSCLC, CRC, HCC, breast and prostate cancers, glioblastoma, neuroblastoma, and leukemia as examples. All show overexpression scenarios of master transcription factors, transcription factors with gene fusions, copy number alterations, dysregulation of the epigenetic codes and epithelial-to-mesenchymal transitions in aggressive tumors, as well as high mutation loads of vital upstream signaling regulators, such as EGFR, c-MET, and K-Ras, befitting these principles.
Responses