Related Articles

The dual role of motivation on goals and well-being in higher vocational education students: a self-determination theory perspective

Students’ well-being has received increasing international attention. However, research on well-being among higher vocational education (HVE) students, particularly in non-WEIRD contexts, remains limited. This study addresses this gap by investigating the relationships between goals, motivation, and well-being for HVE students in China through the lens of self-determination theory. A survey was administered to 1106 HVE students at a vocational college in China to collect data on their goal content, motivation, and well-being. Quantitative analyses revealed that motivation plays a dual role, acting as both a mediator and a moderator in the relationship between goals and well-being. This dual role is crucial for understanding not only how goals influence well-being but also under what conditions different types of goals promote or hinder well-being. Specifically, intrinsic goals, when paired with autonomous motivation, were found to significantly predict increased well-being. While extrinsic goals combined with controlled motivation also reliably predicted well-being, this relationship should be interpreted cautiously within the specific cultural context of the study. Furthermore, positive relationships between extrinsic goals and well-being, as well as between amotivation and well-being, were observed, contrasting findings from ‘WEIRD’ contexts. This study provides novel insights into how motivation functions as both a moderator and mediator in the goal-well-being relationship within a ‘non-WEIRD,’ specifically Chinese, HVE context. These findings underscore the importance of supporting students in pursuing goals to enhance their well-being. Further research is needed to explore these relationships in diverse cultural settings.

Humans rationally balance detailed and temporally abstract world models

How do people model the world’s dynamics to guide mental simulation and evaluate choices? One prominent approach, the Successor Representation (SR), takes advantage of temporal abstraction of future states: by aggregating trajectory predictions over multiple timesteps, the brain can avoid the costs of iterative, multi-step mental simulation. Human behavior broadly shows signatures of such temporal abstraction, but finer-grained characterization of individuals’ strategies and their dynamic adjustment remains an open question. We developed a task to measure SR usage during dynamic, trial-by-trial learning. Using this approach, we find that participants exhibit a mix of SR and model-based learning strategies that varies across individuals. Further, by dynamically manipulating the task contingencies within-subject to favor or disfavor temporal abstraction, we observe evidence of resource-rational reliance on the SR, which decreases when future states are less predictable. Our work adds to a growing body of research showing that the brain arbitrates between approximate decision strategies. The current study extends these ideas from simple habits into usage of more sophisticated approximate predictive models, and demonstrates that individuals dynamically adapt these in response to the predictability of their environment.

Dopamine in the tail of the striatum facilitates avoidance in threat–reward conflicts

Responding appropriately to potential threats before they materialize is critical to avoiding disastrous outcomes. Here we examine how threat-coping behavior is regulated by the tail of the striatum (TS) and its dopamine input. Mice were presented with a potential threat (a moving object) while pursuing rewards. Initially, the mice failed to obtain rewards but gradually improved in later trials. We found that dopamine in TS promoted avoidance of the threat, even at the expense of reward acquisition. Furthermore, the activity of dopamine D1 receptor-expressing neurons promoted threat avoidance and prediction. In contrast, D2 neurons suppressed threat avoidance and facilitated overcoming the potential threat. Dopamine axon activation in TS not only potentiated the responses of dopamine D1 receptor-expressing neurons to novel sensory stimuli but also boosted them acutely. These results demonstrate that an opponent interaction of D1 and D2 neurons in the TS, modulated by dopamine, dynamically regulates avoidance and overcoming potential threats.

Constructing future behavior in the hippocampal formation through composition and replay

The hippocampus is critical for memory, imagination and constructive reasoning. Recent models have suggested that its neuronal responses can be well explained by state spaces that model the transitions between experiences. Here we use simulations and hippocampal recordings to reconcile these views. We show that if state spaces are constructed compositionally from existing building blocks, or primitives, hippocampal responses can be interpreted as compositional memories, binding these primitives together. Critically, this enables agents to behave optimally in new environments with no new learning, inferring behavior directly from the composition. We predict a role for hippocampal replay in building and consolidating these compositional memories. We test these predictions in two datasets by showing that replay events from newly discovered landmarks induce and strengthen new remote firing fields. When the landmark is moved, replay builds a new firing field at the same vector to the new location. Together, these findings provide a framework for reasoning about compositional memories and demonstrate that such memories are formed in hippocampal replay.

Emotions and individual differences shape human foraging under threat

A common behavior in natural environments is foraging for rewards. However, this is often in the presence of predators. Therefore, one of the most fundamental decisions for humans, as for other animals, is how to apportion time between reward-motivated pursuit behavior and threat-motivated checking behavior. To understand what affects how people strike this balance, we developed an ecologically inspired task and looked at both within-participant dynamics (moods) and between-participant individual differences (questionnaires about real-life behaviors) in two large internet samples (n = 374 and n = 702) in a cross-sectional design. For the within-participant dynamics, we found that people regulate task-evoked stress homeostatically by changing behavior (increasing foraging and hiding). Individual differences, even in superficially related traits (apathy–anhedonia and anxiety–compulsive checking) reliably mapped onto unique behaviors. Worse task performance, due to maladaptive checking, was linked to gender (women checked excessively) and specific anxiety-related traits: somatic anxiety (reduced self-reported checking due to worry) and compulsivity (self-reported disorganized checking). While anhedonia decreased self-reported task engagement, apathy, strikingly, improved overall task performance by reducing excessive checking. In summary, we provide a multifaceted paradigm for assessment of checking for threat in a naturalistic task that is sensitive to both moods as they change throughout the task and clinical dimensions. Thus, it could serve as an objective measurement tool for future clinical studies interested in threat, vigilance or behavior–emotion interactions in contexts requiring both reward seeking and threat avoidance.

Responses

Your email address will not be published. Required fields are marked *