Related Articles

Building collaborative infrastructures for an interdisciplinary higher education master’s program

This paper examines the practices and importance of building a collaborative infrastructure in interdisciplinary education, using the context of the master’s program developed by the Interdisciplinary Consortium for Applied Research in Ecology and Evolution (ICARE) as a case study. The study focuses on two levels of collaborative infrastructure: The project organization and project practice of the ICARE program and the specific use of CoNavigator, a physical tool for interdisciplinary teaching, learning, and collaboration. The analysis explores the educational aspects of the ICARE program and investigates how the training teams (each consisting of a master’s student, supervisors, and mentors) within the project organized themselves and developed their collaboration methods. By examining the challenges faced by ICARE and the implications for its Trainees and stakeholders, this paper emphasizes the significance of prioritizing and developing robust and explicit collaborative infrastructures both at the program and institutional level, as the challenges identified in ICARE mirror those at higher institutional levels, where interdisciplinary activities are not sustained unless they are fully embedded in the visible and physical structures. The findings provide valuable insights for future interdisciplinary study programs and underscore the necessity of proactive infrastructure planning and implementation to support successful interdisciplinary teaching and learning practices.

Data-driven strategies to improve nitrogen use efficiency of rice farming in South Asia

Increasing nitrogen use efficiency (NUE) in agricultural production mitigates climate change, limits water pollution and reduces fertilizer subsidy costs. Nevertheless, strategies for increasing NUE without jeopardizing food security are uncertain in globally important cropping systems. Here we analyse a novel dataset of more than 31,000 farmer fields spanning the Terai of Nepal, Bangladesh’s floodplains and four major rice-producing regions of India. Results indicate that 55% of rice farmers overuse nitrogen fertilizer, and hence the region could save 18 kg of nitrogen per hectare without compromising rice yield. Disincentivizing this excess nitrogen application presents the most impactful pathway for increasing NUE. Addressing yield constraints unrelated to crop nutrition can also improve NUE, most promisingly through earlier transplanting and improving water management, and this secondary pathway was overlooked in the IPCC’s 2022 report on climate change mitigation. Combining nitrogen input reduction with changes to agronomic management could increase rice production in South Asia by 8% while reducing environmental pollution from nitrogen fertilizer, measured as nitrogen surplus, by 36%. Even so, opportunities to improve NUE vary within South Asia, which necessitates sub-regional strategies for sustainable nitrogen management.

A systematic review and meta-analyses of the temporal stability and convergent validity of risk preference measures

Understanding whether risk preference represents a stable, coherent trait is central to efforts aimed at explaining, predicting and preventing risk-related behaviours. We help characterize the nature of the construct by adopting a systematic review and individual participant data meta-analytic approach to summarize the temporal stability of 358 risk preference measures (33 panels, 57 samples, 579,114 respondents). Our findings reveal noteworthy heterogeneity across and within measure categories (propensity, frequency and behaviour), domains (for example, investment, occupational and alcohol consumption) and sample characteristics (for example, age). Specifically, while self-reported propensity and frequency measures of risk preference show a higher degree of stability than behavioural measures, these patterns are moderated by domain and age. Crucially, an analysis of convergent validity reveals a low agreement across measures, questioning the idea that they capture the same underlying phenomena. Our results raise concerns about the coherence and measurement of the risk preference construct.

Archaean green-light environments drove the evolution of cyanobacteria’s light-harvesting system

Cyanobacteria induced the great oxidation event around 2.4 billion years ago, probably triggering the rise in aerobic biodiversity. While chlorophylls are universal pigments used by all phototrophic organisms, cyanobacteria use additional pigments called phycobilins for their light-harvesting antennas—phycobilisomes—to absorb light energy at complementary wavelengths to chlorophylls. Nonetheless, an enigma persists: why did cyanobacteria need phycobilisomes? Here, we demonstrate through numerical simulations that the underwater light spectrum during the Archaean era was probably predominantly green owing to oxidized Fe(III) precipitation. The green-light environments, probably shaped by photosynthetic organisms, may have directed their own photosynthetic evolution. Genetic engineering of extant cyanobacteria, simulating past natural selection, suggests that cyanobacteria that acquired a green-specialized phycobilin called phycoerythrobilin could have flourished under green-light environments. Phylogenetic analyses indicate that the common ancestor of modern cyanobacteria embraced all key components of phycobilisomes to establish an intricate energy transfer mechanism towards chlorophylls using green light and thus gained strong selective advantage under green-light conditions. Our findings highlight the co-evolutionary relationship between oxygenic phototrophs and light environments that defined the aquatic landscape of the Archaean Earth and envision the green colour as a sign of the distinct evolutionary stage of inhabited planets.

Responses

Your email address will not be published. Required fields are marked *