Related Articles

Periodontitis impacts on thrombotic diseases: from clinical aspect to future therapeutic approaches

Periodontitis is a chronic inflammatory disease initiated by biofilm microorganisms and mediated by host immune imbalance. Uncontrolled periodontal infections are the leading cause of tooth loss in adults. Thrombotic diseases can lead to partial or complete obstruction of blood flow in the circulatory system, manifesting as organ or tissue ischemia and necrosis in patients with arterial thrombosis, and local edema, pain and circulatory instability in patients with venous thrombosis, which may lead to mortality or fatality in severe case. Recent studies found that periodontitis might enhance thrombosis through bacterial transmission or systemic inflammation by affecting platelet-immune cell interactions, as well as the coagulation, and periodontal therapy could have a prophylactic effect on patients with thrombotic diseases. In this review, we summarized clinical findings on the association between periodontitis and thrombotic diseases and discussed several novel prothrombotic periodontitis-related agents, and presented a perspective to emphasize the necessity of oral health management for people at high risk of thrombosis.

Noise causes cardiovascular disease: it’s time to act

Chronic transportation noise is an environmental stressor affecting a substantial portion of the population. The World Health Organization (WHO) and various studies have established associations between transportation noise and cardiovascular disease (CVD), such as myocardial infarction, stroke, heart failure, and arrhythmia. The WHO Environmental Noise Guidelines and recent reviews confirm a heightened risk of cardiovascular incidents with increasing transportation noise levels.

Plasma proteome variation and its genetic determinants in children and adolescents

Our current understanding of the determinants of plasma proteome variation during pediatric development remains incomplete. Here, we show that genetic variants, age, sex and body mass index significantly influence this variation. Using a streamlined and highly quantitative mass spectrometry-based proteomics workflow, we analyzed plasma from 2,147 children and adolescents, identifying 1,216 proteins after quality control. Notably, the levels of 70% of these were associated with at least one of the aforementioned factors, with protein levels also being predictive. Quantitative trait loci (QTLs) regulated at least one-third of the proteins; between a few percent and up to 30-fold. Together with excellent replication in an additional 1,000 children and 558 adults, this reveals substantial genetic effects on plasma protein levels, persisting from childhood into adulthood. Through Mendelian randomization and colocalization analyses, we identified 41 causal genes for 33 cardiometabolic traits, emphasizing the value of protein QTLs in drug target identification and disease understanding.

YY1 mutations disrupt corticogenesis through a cell type specific rewiring of cell-autonomous and non-cell-autonomous transcriptional programs

Germline mutations of YY1 cause Gabriele-de Vries syndrome (GADEVS), a neurodevelopmental disorder featuring intellectual disability and a wide range of systemic manifestations. To dissect the cellular and molecular mechanisms underlying GADEVS, we combined large-scale imaging, single-cell multiomics and gene regulatory network reconstruction in 2D and 3D patient-derived physiopathologically relevant cell lineages. YY1 haploinsufficiency causes a pervasive alteration of cell type specific transcriptional networks, disrupting corticogenesis at the level of neural progenitors and terminally differentiated neurons, including cytoarchitectural defects reminiscent of GADEVS clinical features. Transcriptional alterations in neurons propagated to neighboring astrocytes through a major non-cell autonomous pro-inflammatory effect that grounds the rationale for modulatory interventions. Together, neurodevelopmental trajectories, synaptic formation and neuronal-astrocyte cross talk emerged as salient domains of YY1 dosage-dependent vulnerability. Mechanistically, cell type resolved reconstruction of gene regulatory networks uncovered the regulatory interplay between YY1, NEUROG2 and ETV5 and its aberrant rewiring in GADEVS. Our findings underscore the reach of advanced in vitro models in capturing developmental antecedents of clinical features and exposing their underlying mechanisms to guide the search for targeted interventions.

Responses

Your email address will not be published. Required fields are marked *