Related Articles
Apaf-1 is an evolutionarily conserved DNA sensor that switches the cell fate between apoptosis and inflammation
Apoptotic protease activating factor 1 (Apaf-1) was traditionally defined as a scaffold protein in mammalian cells for assembling a caspase activation platform known as the ‘apoptosome’ after its binding to cytochrome c. Although Apaf-1 structurally resembles animal NOD-like receptor (NLR) and plant resistance (R) proteins, whether it is directly involved in innate immunity is still largely unknown. Here, we found that Apaf-1-like molecules from lancelets, fruit flies, mice, and humans have conserved DNA sensing functionality. Mechanistically, mammalian Apaf-1 recruits receptor-interacting protein 2 (RIP2, also known as RIPK2) via its WD40 repeat domain and promotes RIP2 oligomerization to initiate NF-κB-driven inflammation upon cytoplasmic DNA recognition. Furthermore, DNA binding of Apaf-1 determines cell fate by switching the cellular processes between intrinsic stimuli-activated apoptosis and inflammation. These findings suggest that Apaf-1 is an evolutionarily conserved DNA sensor and may serve as a cell fate checkpoint, which determines whether cells initiate inflammation or undergo apoptosis by distinct ligand binding.
Structural insights into how DEK nucleosome binding facilitates H3K27 trimethylation in chromatin
Structural diversity of the nucleosome affects chromatin conformations and regulates eukaryotic genome functions. Here we identify DEK, whose function is unknown, as a nucleosome-binding protein. In embryonic neural progenitor cells, DEK colocalizes with H3 K27 trimethylation (H3K27me3), the facultative heterochromatin mark. DEK stimulates the methyltransferase activity of Polycomb repressive complex 2 (PRC2), which is responsible for H3K27me3 deposition in vitro. Cryo-electron microscopy structures of the DEK–nucleosome complexes reveal that DEK binds the nucleosome by its tripartite DNA-binding mode on the dyad and linker DNAs and interacts with the nucleosomal acidic patch by its newly identified histone-binding region. The DEK–nucleosome interaction mediates linker DNA reorientation and induces chromatin compaction, which may facilitate PRC2 activation. These findings provide mechanistic insights into chromatin structure-mediated gene regulation by DEK.
KorB switching from DNA-sliding clamp to repressor mediates long-range gene silencing in a multi-drug resistance plasmid
Examples of long-range gene regulation in bacteria are rare and generally thought to involve DNA looping. Here, using a combination of biophysical approaches including X-ray crystallography and single-molecule analysis for the KorB–KorA system in Escherichia coli, we show that long-range gene silencing on the plasmid RK2, a source of multi-drug resistance across diverse Gram-negative bacteria, is achieved cooperatively by a DNA-sliding clamp, KorB, and a clamp-locking protein, KorA. We show that KorB is a CTPase clamp that can entrap and slide along DNA to reach distal target promoters up to 1.5 kb away. We resolved the tripartite crystal structure of a KorB–KorA–DNA co-complex, revealing that KorA latches KorB into a closed clamp state. DNA-bound KorA thus stimulates repression by stalling KorB sliding at target promoters to occlude RNA polymerase holoenzymes. Together, our findings explain the mechanistic basis for KorB role switching from a DNA-sliding clamp to a co-repressor and provide an alternative mechanism for long-range regulation of gene expression in bacteria.
EV DNA from pancreatic cancer patient-derived cells harbors molecular, coding, non-coding signatures and mutational hotspots
DNA packaged into cancer cell-derived EV is not well appreciated. Here, we uncovered signatures of EV DNA secreted by pancreatic cancer cells. The cancer cells and non-cancer counterparts exhibit distinct low vs. high molecular weight (LMW vs. HMW) EV DNA fragments distribution, respectively. Genome sequencing and Single Nucleotide Variants analysis revealed that 95% of reads and 94% of SNVs map to noncoding regions of the genome. Given that ~1% of the human genome represents coding regions, the 5% mapping rate to coding regions suggests a non-random enrichment of certain coding regions and mutations. The LMW DNA fragments not only set cancer cells apart, but also harbor cancer specific enrichment of unique coding regions, the top nine being FAM135B, COL22A1, TSNARE1, KCNK9, ZFAT, JRK, MROH5, GSDMD, and MIR3667HG. Additionally, the cancer cells’ LMW DNA fragments exhibit dense centromeric mapping more strikingly on chromosomes 3, 7, 9, 10, 11, 13, 17, and 20. Mutational profiling turned up close to 200 mutations specific for the cancer cells. Altogether, our analyses suggest that centromeric regions might hold clues to EV DNA content from pancreatic cancer, the molecular, mutational signatures thereof, and rationalizes the need for a new approach to DNA biomarker research.
Integrated proteogenomic characterization of ampullary adenocarcinoma
Ampullary adenocarcinoma (AMPAC) is a rare and heterogeneous malignancy. Here we performed a comprehensive proteogenomic analysis of 198 samples from Chinese AMPAC patients and duodenum patients. Genomic data illustrate that 4q loss causes fatty acid accumulation and cell proliferation. Proteomic analysis has revealed three distinct clusters (C-FAM, C-AD, C-CC), among which the most aggressive cluster, C-AD, is associated with the poorest prognosis and is characterized by focal adhesion. Immune clustering identifies three immune clusters and reveals that immune cluster M1 (macrophage infiltration cluster) and M3 (DC cell infiltration cluster), which exhibit a higher immune score compared to cluster M2 (CD4+ T-cell infiltration cluster), are associated with a poor prognosis due to the potential secretion of IL-6 by tumor cells and its consequential influence. This study provides a comprehensive proteogenomic analysis for seeking for better understanding and potential treatment of AMPAC.
Responses