Related Articles

A machine learning approach to leveraging electronic health records for enhanced omics analysis

Omics studies produce a large number of measurements, enabling the development, validation and interpretation of systems-level biological models. Large cohorts are required to power these complex models; yet, the cohort size remains limited due to clinical and budgetary constraints. We introduce clinical and omics multimodal analysis enhanced with transfer learning (COMET), a machine learning framework that incorporates large, observational electronic health record databases and transfer learning to improve the analysis of small datasets from omics studies. By pretraining on electronic health record data and adaptively blending both early and late fusion strategies, COMET overcomes the limitations of existing multimodal machine learning methods. Using two independent datasets, we showed that COMET improved the predictive modelling performance and biological discovery compared with the analysis of omics data with traditional methods. By incorporating electronic health record data into omics analyses, COMET enables more precise patient classifications, beyond the simplistic binary reduction to cases and controls. This framework can be broadly applied to the analysis of multimodal omics studies and reveals more powerful biological insights from limited cohort sizes.

TCR catch bonds nonlinearly control CD8 cooperation to shape T cell specificity

Naturally evolved T-cell receptors (TCRs) exhibit remarkably high specificity in discriminating non-self antigens from self-antigens under dynamic biomechanical modulation. In contrast, engineered high-affinity TCRs often lose this specificity, leading to cross-reactivity with self-antigens and off-target toxicity. The underlying mechanism for this difference remains unclear. Our study reveals that natural TCRs exploit mechanical force to form optimal catch bonds with their cognate antigens. This process relies on a mechanically flexible TCR–pMHC binding interface, which enables force-enhanced CD8 coreceptor binding to MHC-α1α2 domains through sequential conformational changes induced by force in both the MHC and CD8. Conversely, engineered high-affinity TCRs create rigid, tightly bound interfaces with cognate pMHCs of their parental TCRs. This rigidity prevents the force-induced conformational changes necessary for optimal catch-bond formation. Paradoxically, these high-affinity TCRs can form moderate catch bonds with non-stimulatory pMHCs of their parental TCRs, leading to off-target cross-reactivity and reduced specificity. We have also developed comprehensive force-dependent TCR–pMHC kinetics-function maps capable of distinguishing functional and non-functional TCR–pMHC pairs and identifying toxic, cross-reactive TCRs. These findings elucidate the mechano-chemical basis of the specificity of natural TCRs and highlight the critical role of CD8 in targeting cognate antigens. This work provides valuable insights for engineering TCRs with enhanced specificity and potency against non-self antigens, particularly for applications in cancer immunotherapy and infectious disease treatment, while minimizing the risk of self-antigen cross-reactivity.

Categorizing robots by performance fitness into the tree of robots

Robots are typically classified based on specific morphological features, like their kinematic structure. However, a complex interplay between morphology and intelligence shapes how well a robot performs processes. Just as delicate surgical procedures demand high dexterity and tactile precision, manual warehouse or construction work requires strength and endurance. These process requirements necessitate robot systems that provide a level of performance fitting the process. In this work, we introduce the tree of robots as a taxonomy to bridge the gap between morphological classification and process-based performance. It classifies robots based on their fitness to perform, for example, physical interaction processes. Using 11 industrial manipulators, we constructed the first part of the tree of robots based on a carefully deduced set of metrics reflecting fundamental robot capabilities for various industrial physical interaction processes. Through significance analysis, we identified substantial differences between the systems, grouping them via an expectation-maximization algorithm to create a fitness-based robot classification that is open for contributions and accessible.

Higher income is associated with greater life satisfaction, and more stress

Is there a cost to our well-being from increased affluence? Drawing upon responses from 2.05 million U.S. adults from the Gallup Daily Poll from 2008 to 2017 we find that with household income above ~$63,000 respondents are more likely to experience stress. This contrasts with the trend below this threshold, where at higher income the prevalence of stress decreases. Such a turning point for stress was also found for population sub-groups, divided by gender, race, and political affiliation. Further, we find that respondents who report prior-day stress have lower life satisfaction for all income and sub-group categories compared to the respondents who do not report prior-day stress. We find suggestive evidence that among the more satisfied, healthier, socially connected, and those not suffering basic needs deprivations, this turn-around in stress prevalence starts at lower values of income and stress. We hypothesize that stress at higher income values relates to lifestyle factors associated with affluence, rather than from known well-being deprivations related to good health and social conditions, which may arise even at lower income values if conventional needs are met.

Universal relations and bounds for fluctuations in quasistatic small heat engines

The efficiency of any heat engine, defined as the ratio of average work output to heat input, is bounded by Carnot’s celebrated result. However, this measure is insufficient to characterize the properties of miniaturized heat engines carrying non-negligible fluctuations, and a study of higher-order statistics of their energy exchanges is required. Here, we generalize Carnot’s result for reversible cycles to arbitrary order moment of the work and heat fluctuations. Our results show that, in the quasistatic limit, higher-order statistics of a small engine’s energetics depend solely on the ratio between the temperatures of the thermal baths. We further prove that our result for the second moment gives universal bounds for the ratio between the variances of work and heat for quasistatic cycles. We test this theory with our previous experimental results of a Brownian Carnot engine and observe the consistency between them, even beyond the quasistatic regime. Our results can be exploited in the design of thermal nanomachines to reduce their fluctuations of work output without marginalizing its average value and efficiency.

Responses

Your email address will not be published. Required fields are marked *