Related Articles

Type 2 immunity in allergic diseases

Significant advancements have been made in understanding the cellular and molecular mechanisms of type 2 immunity in allergic diseases such as asthma, allergic rhinitis, chronic rhinosinusitis, eosinophilic esophagitis (EoE), food and drug allergies, and atopic dermatitis (AD). Type 2 immunity has evolved to protect against parasitic diseases and toxins, plays a role in the expulsion of parasites and larvae from inner tissues to the lumen and outside the body, maintains microbe-rich skin and mucosal epithelial barriers and counterbalances the type 1 immune response and its destructive effects. During the development of a type 2 immune response, an innate immune response initiates starting from epithelial cells and innate lymphoid cells (ILCs), including dendritic cells and macrophages, and translates to adaptive T and B-cell immunity, particularly IgE antibody production. Eosinophils, mast cells and basophils have effects on effector functions. Cytokines from ILC2s and CD4+ helper type 2 (Th2) cells, CD8 + T cells, and NK-T cells, along with myeloid cells, including IL-4, IL-5, IL-9, and IL-13, initiate and sustain allergic inflammation via T cell cells, eosinophils, and ILC2s; promote IgE class switching; and open the epithelial barrier. Epithelial cell activation, alarmin release and barrier dysfunction are key in the development of not only allergic diseases but also many other systemic diseases. Recent biologics targeting the pathways and effector functions of IL4/IL13, IL-5, and IgE have shown promising results for almost all ages, although some patients with severe allergic diseases do not respond to these therapies, highlighting the unmet need for a more detailed and personalized approach.

Metabolite-driven mechanisms reveal chemical ecology of Lehmann Lovegrass (Eragrostis lehmanniana) invasion in North American semi-arid ecosystems

Invasive plants threaten global ecosystems, yet traditional analyses of functional traits cannot fully explain their dominance over co-occurring natives. Metabolomics offers insights into plant invasions, but single-technique studies often miss critical biochemical mechanisms. We employ a multimodal metabolomics approach (¹H NMR, LC MS/MS, FT-ICR-MS, and MALDI-MSI) to investigate the biochemical basis of Lehmann lovegrass (Eragrostis lehmanniana) invasion in semi-arid North America, comparing it with a co-occurring native grass, Arizona cottontop (Digitaria californica). Our analysis reveals three metabolomic traits of Lehmann lovegrass compared to Arizona cottontop: Enhanced nitrogen allocation in shoots, reduced defensive metabolites in root layers; and increased root exudate modulation under stress conditions. These traits suggest Lehmann lovegrass succeeds through adaptation to increasing aridity rather than direct competition, demonstrating adaptation to nutrient-poor environments and high phenotypic plasticity in response to increasing aridity. This integrated metabolomic approach provides new mechanistic insights into invasion ecology and plant adaptation under environmental change.

Comprehensive co-expression network reveals the fine-tuning of AsHSFA2c in balancing drought tolerance and growth in oat

Persistent activation of drought tolerance is detrimental to plant growth and development. However, the mechanism that balances plant drought tolerance and growth remains largely undetermined. Here, we constructed a comprehensive co-expression network comprising 84 transcriptome datasets associated with growth and drought tolerance in oats. Moreover, 84 functional modules and many candidate genes related to drought tolerance and growth were identified. A key candidate gene, AsHSFA2c was involved in fine-tuning the balance between drought tolerance and growth by inhibiting plant growth and positively regulating drought tolerance. Then, we determined AsDOF25 as an upstream positive regulator and AsAGO1 as the downstream target gene of AsHSFA2c. These results imply that the AsDOF25-AsHSFA2c-AsAGO1 module contributes to the balance between drought tolerance and growth in oats. Our findings and resources will facilitate the identification of key genes related to drought tolerance and further studies of the genetic basis underlying strong drought tolerance in oats.

Endosymbionts modulate virus effects on aphid-plant interactions

Vector-borne pathogens frequently modify traits of their primary hosts and vectors in ways that influence disease transmission. Such effects can themselves be altered by the presence of other microbial symbionts, yet we currently have limited understanding of these interactions. Here we show that effects of pea enation mosaic virus (PEMV) on interactions between host plants and aphid vectors are modulated by the presence of different aphid endosymbionts. In a series of laboratory assays, we found strong interactive effects of virus infection and endosymbionts on aphid metabolomic profiles, population growth, behavior, and virus transmission during aphid feeding. Furthermore, the strongest effects—and those predicted to favor virus transmission—were most apparent in aphid lines harboring particular endosymbionts. These findings show that virus effects on host-vector interactions can be strongly influenced by other microbial symbionts and suggest a potentially important role for such interactions in disease ecology and evolution.

Conserved immunomodulation and variation in host association by Xanthomonadales commensals in Arabidopsis root microbiota

Suppression of chronic Arabidopsis immune responses is a widespread but typically strain-specific trait across the major bacterial lineages of the plant microbiota. We show by phylogenetic analysis and in planta associations with representative strains that immunomodulation is a highly conserved, ancestral trait across Xanthomonadales, and preceded specialization of some of these bacteria as host-adapted pathogens. Rhodanobacter R179 activates immune responses, yet root transcriptomics suggest this commensal evades host immune perception upon prolonged association. R179 camouflage likely results from combined activities of two transporter complexes (dssAB) and the selective elimination of immunogenic peptides derived from all partners. The ability of R179 to mask itself and other commensals from the plant immune system is consistent with a convergence of distinct root transcriptomes triggered by immunosuppressive or non-suppressive synthetic microbiota upon R179 co-inoculation. Immunomodulation through dssAB provided R179 with a competitive advantage in synthetic communities in the root compartment. We propose that extensive immunomodulation by Xanthomonadales is related to their adaptation to terrestrial habitats and might have contributed to variation in strain-specific root association, which together accounts for their prominent role in plant microbiota establishment.

Responses

Your email address will not be published. Required fields are marked *