Related Articles

Analysis of microbial composition and sharing in low-biomass human milk samples: a comparison of DNA isolation and sequencing techniques

Human milk microbiome studies are currently hindered by low milk bacterial/human cell ratios and often rely on 16S rRNA gene sequencing, which limits downstream analyses. Here, we aimed to find a method to study milk bacteria and assess bacterial sharing between maternal and infant microbiota. We tested four DNA isolation methods, two bacterial enrichment methods and three sequencing methods on mock communities, milk samples and negative controls. Of the four DNA isolation kits, the DNeasy PowerSoil Pro (PS) and MagMAX Total Nucleic Acid Isolation (MX) kits provided consistent 16S rRNA gene sequencing results with low contamination. Neither enrichment method substantially decreased the human metagenomic sequencing read-depth. Long-read 16S-ITS-23S rRNA gene sequencing biased the mock community composition but provided consistent results for milk samples, with little contamination. In contrast to 16S rRNA gene sequencing, 16S-ITS-23S rRNA gene sequencing of milk, infant oral, infant faecal and maternal faecal DNA from 14 mother-infant pairs provided sufficient resolution to detect significantly more frequent sharing of bacteria between related pairs compared to unrelated pairs. In conclusion, PS or MX kit-DNA isolation followed by 16S rRNA gene sequencing reliably characterises human milk microbiota, and 16S-ITS-23S rRNA gene sequencing enables studies of bacterial transmission in low-biomass samples.

Microbiome-based interventions to modulate gut ecology and the immune system

The gut microbiome lies at the intersection between the environment and the host, with the ability to modify host responses to disease-relevant exposures and stimuli. This is evident in how enteric microbes interact with the immune system, e.g., supporting immune maturation in early life, affecting drug efficacy via modulation of immune responses, or influencing development of immune cell populations and their mediators. Many factors modulate gut ecosystem dynamics during daily life and we are just beginning to realise the therapeutic and prophylactic potential of microbiome-based interventions. These approaches vary in application, goal, and mechanisms of action. Some modify the entire community, such as nutritional approaches or faecal microbiota transplantation, while others, such as phage therapy, probiotics, and prebiotics, target specific taxa or strains. In this review, we assessed the experimental evidence for microbiome-based interventions, with a particular focus on their clinical relevance, ecological effects, and modulation of the immune system.

Decarbonizing urban residential communities with green hydrogen systems

Community green hydrogen systems, typically consisting of rooftop photovoltaic panels paired with hybrid hydrogen-battery storage, offer urban environments with improved access to clean, on-site energy. However, economically viable pathways for deploying hydrogen storage within urban communities remain unclear. Here we develop a bottom-up energy model linking climate, human behavior and community characteristics to assess the impacts of pathways for deploying community green hydrogen systems in North America from 2030 to 2050. We show that for the same community conditions, the cost difference between the best and worst pathways can be as high as 60%. In particular, the household centralized option emerges as the preferred pathway for most communities. Furthermore, enhancing energy storage demands within these deployment pathways can reduce system design costs up to fourfold. To achieve cost-effective urban decarbonization, the study underscores the critical role of selecting the right deployment pathway and prioritizing the integration of increased energy storage in pathway designs.

Predicting global distributions of eukaryotic plankton communities from satellite data

Satellite remote sensing is a powerful tool to monitor the global dynamics of marine plankton. Previous research has focused on developing models to predict the size or taxonomic groups of phytoplankton. Here, we present an approach to identify community types from a global plankton network that includes phytoplankton and heterotrophic protists and to predict their biogeography using global satellite observations. Six plankton community types were identified from a co-occurrence network inferred using a novel rDNA 18 S V4 planetary-scale eukaryotic metabarcoding dataset. Machine learning techniques were then applied to construct a model that predicted these community types from satellite data. The model showed an overall 67% accuracy in the prediction of the community types. The prediction using 17 satellite-derived parameters showed better performance than that using only temperature and/or the concentration of chlorophyll a. The constructed model predicted the global spatiotemporal distribution of community types over 19 years. The predicted distributions exhibited strong seasonal changes in community types in the subarctic–subtropical boundary regions, which were consistent with previous field observations. The model also identified the long-term trends in the distribution of community types, which suggested responses to ocean warming.

Restoration of gut microbiota with a specific synbiotic-containing infant formula in healthy Chinese infants born by cesarean section

Birth by cesarean section (C-section) is associated with a delayed colonization of bifidobacteria and Bacteroidota species with potential negative health consequences. Previously, an infant formula with a synbiotic mixture of short-chain galacto-oligosaccharides and long-chain fructo-oligosaccharides (scGOS/lcFOS [9:1]) and Bifidobacterium breve M-16V was found to restore the timely colonization of bifidobacteria in C-section born infants. In this study, we investigated the effect of this synbiotic mixture on gut microbiota development in C-section and vaginally–born infants participating in a growth equivalence trial (NCT03520764).

Responses

Your email address will not be published. Required fields are marked *