Related Articles
Optical sorting: past, present and future
Optical sorting combines optical tweezers with diverse techniques, including optical spectrum, artificial intelligence (AI) and immunoassay, to endow unprecedented capabilities in particle sorting. In comparison to other methods such as microfluidics, acoustics and electrophoresis, optical sorting offers appreciable advantages in nanoscale precision, high resolution, non-invasiveness, and is becoming increasingly indispensable in fields of biophysics, chemistry, and materials science. This review aims to offer a comprehensive overview of the history, development, and perspectives of various optical sorting techniques, categorised as passive and active sorting methods. To begin, we elucidate the fundamental physics and attributes of both conventional and exotic optical forces. We then explore sorting capabilities of active optical sorting, which fuses optical tweezers with a diversity of techniques, including Raman spectroscopy and machine learning. Afterwards, we reveal the essential roles played by deterministic light fields, configured with lens systems or metasurfaces, in the passive sorting of particles based on their varying sizes and shapes, sorting resolutions and speeds. We conclude with our vision of the most promising and futuristic directions, including AI-facilitated ultrafast and bio-morphology-selective sorting. It can be envisioned that optical sorting will inevitably become a revolutionary tool in scientific research and practical biomedical applications.
In vivo surface-enhanced Raman scattering techniques: nanoprobes, instrumentation, and applications
Surface-enhanced Raman scattering (SERS) has emerged as a powerful tool in various biomedical applications, including in vivo imaging, diagnostics, and therapy, largely due to the development of near-infrared (NIR) active SERS substrates. This review provides a comprehensive overview of SERS-based applications in vivo, focusing on key aspects such as the design considerations for SERS nanoprobes and advancements in instrumentation. Topics covered include the development of NIR SERS substrates, Raman label compounds (RLCs), protective coatings, and the conjugation of bioligands for targeted imaging and therapy. The review also discusses microscope-based configurations such as scanning, widefield imaging, and fiber-optic setups. Recent advances in using SERS nanoprobes for in vivo sensing, diagnostics, biomolecule screening, multiplex imaging, intraoperative guidance, and multifunctional cancer therapy are highlighted. The review concludes by addressing challenges in the clinical translation of SERS nanoprobes and outlines future directions, emphasizing opportunities for advancing biomedical research and clinical applications.
Magnetic and mechanical hardening of nano-lamellar magnets using thermo-magnetic fields
High-performance magnetic materials based on rare-earth intermetallic compounds are critical for energy conversion technologies. However, the high cost and supply risks of rare-earth elements necessitate the development of affordable alternatives. Another challenge lies in the inherent brittleness of current magnets, which limits their applications for high dynamic mechanical loading conditions during service and complex shape design during manufacturing towards high efficiency and sustainability. Here, we propose a strategy to simultaneously enhance the magnetic and mechanical performance of a rare-earth-free multicomponent magnet. We achieve this by introducing nano-lamellar structures with high shape anisotropy into a cobalt–iron–nickel–aluminum material system through eutectoid decomposition under externally applied thermo-magnetic fields. Compared to the conventional thermally activated processing, the thermo-magnetic field accelerates phase decomposition kinetics, producing finer lamellae spacings and smaller eutectoid colonies. The well-tailored size, density, interface, and chemistry of the nano-lamellae enhance their pinning effect against the motion of both magnetic domain walls and dislocations, resulting in concurrent gains in coercivity and mechanical strength. Our work demonstrates a rational pathway to designing multifunctional rare-earth-free magnets for energy conversion devices such as high-speed motors and generators operating under harsh service conditions.
A connection between proto-neutron-star Tayler–Spruit dynamos and low-field magnetars
Low-field magnetars have dipolar magnetic fields of 1012–1013 G, 10–100 times weaker than the values of magnetic-field strength B ≈ 1014–1015 G used to define classical magnetars, yet they produce similar X-ray bursts and outbursts. Using direct numerical simulations of magnetothermal evolution starting from a dynamo-generated magnetic field, we show that the low-field magnetars can be produced as a result of a Tayler–Spruit dynamo inside a proto-neutron star. We find that these simulations naturally explain key characteristics of low-field magnetars: weak (≲1013 G) dipolar magnetic fields, strong small-scale fields and magnetically induced crustal failures producing X-ray bursts. These findings suggest that the formation channel of low-B magnetars is distinct from that for classical magnetars, reflecting potential differences in proto-neutron-star dynamos.
Observationally derived magnetic field strength and 3D components in the HD 142527 disk
The magnetic fields in protoplanetary disks around young stars play an important role in disk evolution and planet formation. Measuring the polarized thermal emission from magnetically aligned grains is a reliable method for tracing magnetic fields. However, it has been difficult to observe magnetic fields from dust polarization in protoplanetary disks because other polarization mechanisms involving grown dust grains become efficient. Here we report multi-wavelength (0.87, 1.3, 2.1 and 2.7 mm) observations of polarized thermal emission in the protoplanetary disk around HD 142527, which shows a lopsided dust distribution. We revealed that smaller dust particles still exhibit magnetic alignment in the southern part of the disk. Furthermore, angular offsets between the observed magnetic field and the disk azimuthal direction were discovered. These offsets can be used to measure the relative strengths of each component of a three-dimensional magnetic field (radial (Br), azimuthal (Bϕ) and vertical (Bz)). Applying this method, we derived the magnetic field around a 200 au radius from the protostar as ∣Br∣:∣Bϕ∣:∣Bz∣ ≈ 0.26:1:0.23 with a strength of ~0.3 mG. Our observations provide some key parameters of magnetic activities, including the plasma beta, which has had to be assumed in theoretical studies. In addition, the radial and vertical angular momentum transfers were found to be comparable, which poses a challenge to theoretical studies of protoplanetary disks.
Responses