Related Articles
Iron homeostasis and ferroptosis in muscle diseases and disorders: mechanisms and therapeutic prospects
The muscular system plays a critical role in the human body by governing skeletal movement, cardiovascular function, and the activities of digestive organs. Additionally, muscle tissues serve an endocrine function by secreting myogenic cytokines, thereby regulating metabolism throughout the entire body. Maintaining muscle function requires iron homeostasis. Recent studies suggest that disruptions in iron metabolism and ferroptosis, a form of iron-dependent cell death, are essential contributors to the progression of a wide range of muscle diseases and disorders, including sarcopenia, cardiomyopathy, and amyotrophic lateral sclerosis. Thus, a comprehensive overview of the mechanisms regulating iron metabolism and ferroptosis in these conditions is crucial for identifying potential therapeutic targets and developing new strategies for disease treatment and/or prevention. This review aims to summarize recent advances in understanding the molecular mechanisms underlying ferroptosis in the context of muscle injury, as well as associated muscle diseases and disorders. Moreover, we discuss potential targets within the ferroptosis pathway and possible strategies for managing muscle disorders. Finally, we shed new light on current limitations and future prospects for therapeutic interventions targeting ferroptosis.
Anionic lipids direct efficient microfluidic encapsulation of stable and functionally active proteins in lipid nanoparticles
Because proteins do not efficiently pass through the plasma membrane, protein therapeutics are limited to target ligands located at the cell surface or in serum. Lipid nanoparticles can facilitate delivery of polar molecules across a membrane. We hypothesized that because most proteins are amphoteric ionizable polycations, proteins would associate with anionic lipids, enabling microfluidic chip assembly of stable EP-LNPs (Encapsulated Proteins in Lipid NanoParticles). Here, by employing anionic lipids we were able to efficiently load proteins into EP-LNPs at protein:lipid w:w ratios of 1:20. Several proteins with diverse molecular weights and isoelectric points were encapsulated at efficiencies of 70 75%–90% and remained packaged for several months. Proteins packaged in EP-LNPs efficiently entered mammalian cells and fungal cells with cell walls. The proteins delivered intracellularly were functional. EP-LNPs technology should improve cellular delivery of medicinal antibodies, enzymes, peptide antimetabolites, and dominant negative proteins, opening new fields of protein therapeutics
Cholesterol homeostasis and lipid raft dynamics at the basis of tumor-induced immune dysfunction in chronic lymphocytic leukemia
Autologous T-cell therapies show limited efficacy in chronic lymphocytic leukemia (CLL), where acquired immune dysfunction prevails. In CLL, disturbed mitochondrial metabolism has been linked to defective T-cell activation and proliferation. Recent research suggests that lipid metabolism regulates mitochondrial function and differentiation in T cells, yet its role in CLL remains unexplored. This comprehensive study compares T-cell lipid metabolism in CLL patients and healthy donors, revealing critical dependence on exogenous cholesterol for human T-cell expansion following TCR-mediated activation. Using multi-omics and functional assays, we found that T cells present in viably frozen samples of patients with CLL (CLL T cells) showed impaired adaptation to cholesterol deprivation and inadequate upregulation of key lipid metabolism transcription factors. CLL T cells exhibited altered lipid storage, with increased triacylglycerols and decreased cholesterol, and inefficient fatty acid oxidation (FAO). Functional consequences of reduced FAO in T cells were studied using samples from patients with inherent FAO disorders. Reduced FAO was associated with lower T-cell activation but did not affect proliferation. This implicates low cholesterol levels as a primary factor limiting T-cell proliferation in CLL. CLL T cells displayed fewer and less clustered lipid rafts, potentially explaining the impaired immune synapse formation observed in these patients. Our findings highlight significant disruptions in lipid metabolism as drivers of functional deficiencies in CLL T cells, underscoring the pivotal role of cholesterol in T-cell proliferation. This study suggests that modulating cholesterol metabolism could enhance T-cell function in CLL, presenting novel immunotherapeutic approaches to improve outcome in this challenging disease.
Determinants of consumer intention to use autonomous delivery vehicles: based on the planned behavior theory and normative activation model
Autonomous delivery vehicles (ADVs) that provide contactless services have attracted much academic and practical attention in China in recent years. Despite this, there is a lack of in-depth research on what motivates customers to embrace ADVs. The study integrates the theory of planned behavior (TPB) and normative activation model (NAM) and explores how environmental factors, situational factors, and individual factors affect original TPB constructs and ultimately consumers’ intention to use ADVs. Structural equation modeling was performed on survey data of 561 Chinese consumers through an online sampling platform. The results show that among the factors affecting consumer intention, word-of-mouth recommendations have the greatest impact, followed by perceived enjoyment, COVID-19 risk, ascription of responsibility, subjective norm, attitude, and perceived behavioral control. The results not only make important theoretical contributions to the technology acceptance fields but also provide helpful references to logistics enterprises, ADVs technology providers, and policymakers.
Golgi condensation causes intestinal lipid accumulation through HIF-1α-mediated GM130 ubiquitination by NEDD4
The breakdown of Golgi proteins disrupts lipid trafficking, leading to lipid accumulation in the small intestine. However, the causal mechanism of the effects of Golgi protein degradation on the Golgi structure related to lipid trafficking in the small intestine remains unknown. Here we find that Golgi protein degradation occurs under hypoxic conditions in high-fat-diet-fed mice. Hypoxia-induced degradation promotes structural changes in the Golgi apparatus, termed ‘Golgi condensation’. In addition, hypoxia-inducible factor 1α (HIF-1α) activation enhances Golgi condensation through the ubiquitination and degradation of Golgi matrix protein 130 (GM130), which is facilitated by neural precursor cell expressed developmentally downregulated protein 4 (NEDD4). Golgi condensation upon exposure to hypoxia promotes lipid accumulation, apolipoprotein A1 retention and decreased chylomicron secretion in the intestinal epithelium. Golgi condensation and lipid accumulation induced by GM130 depletion are reversed by exogenous GM130 induction in the intestinal epithelium. Inhibition of either HIF-1α or NEDD4 protects against GM130 degradation and, thereby, rescues cells from Golgi condensation, which further increases apolipoprotein A1 secretion and lipid accumulation both in vivo and in vitro. Furthermore, the HIF-1α inhibitor PX-478 prevents Golgi condensation, which decreases lipid accumulation and promotes high-density lipoprotein secretion in high-fat-diet-fed mice. Overall, our results suggest that Golgi condensation plays a key role in lipid trafficking in the small intestine through the HIF-1α- and NEDD4-mediated degradation of GM130, and these findings highlight the possibility that the prevention of structural modifications in the Golgi apparatus can ameliorate intestinal lipid accumulation in obese individuals.
Responses