Related Articles
Sustainable supply chain management practices and performance: The moderating effect of stakeholder pressure
Currently, sustainable supply chain management practices have become an important strategy for firms to improve performance and gain competitive advantage. However, there is a current debate over the performance outcomes of sustainable supply chain management practices. Additionally, the role of stakeholder pressure is frequently overlooked. Drawing on Natural Resources-Based View and Stakeholder Theory, this study aims to elucidate the ambiguous connection between sustainable supply management, sustainable process management, stakeholder pressure and performance, and investigate the mediation role of sustainable process management and the moderation effect of stakeholder pressure. Our analysis, based on data collected from 235 Chinese manufacturing firms, reveals significant insights. First, stakeholder pressure positively moderates the relationship between sustainable process management and performance, while negatively moderates the relationship between sustainable supply management and performance. Second, sustainable process management has a complete mediation effect on the relationship between sustainable supply management and performance. The conclusion not only explains the inconsistent relationship between sustainable supply chain management practice and performance, but also reveals clearly the relationship between sustainable supply management and sustainable process management. Besides, it also highlights the difference in performance outcomes of sustainable supply management and sustainable process management under stakeholder pressures, and has valuable guidance to the practice of sustainable supply chain management in Chinese manufacturing firms.
Flash Joule heating for synthesis, upcycling and remediation
Electric heating methods are being developed and used to electrify industrial applications and lower their carbon emissions. Direct Joule resistive heating is an energy-efficient electric heating technique that has been widely tested at the bench scale and could replace some energy-intensive and carbon-intensive processes. In this Review, we discuss the use of flash Joule heating (FJH) in processes that are traditionally energy-intensive or carbon-intensive. FJH uses pulse current discharge to rapidly heat materials directly to a desired temperature; it has high-temperature capabilities (>3,000 °C), fast heating and cooling rates (>102 °C s−1), short duration (milliseconds to seconds) and high energy efficiency (~100%). Carbon materials and metastable inorganic materials can be synthesized using FJH from virgin materials and waste feedstocks. FJH is also applied in resource recovery (such as from e-waste) and waste upcycling. An emerging application is in environmental remediation, where FJH can be used to rapidly degrade perfluoroalkyl and polyfluoroalkyl substances and to remove or immobilize heavy metals in soil and solid wastes. Life-cycle and technoeconomic analyses suggest that FJH can reduce energy consumption and carbon emissions and be cost-efficient compared with existing methods. Bringing FJH to industrially relevant scales requires further equipment and engineering development.
Towards sustainable perovskite light-emitting diodes
Perovskite light-emitting diodes (PeLEDs) are advancing to become the frontrunner candidates for the next generation of lighting and display technologies. However, despite rapid technical development, a thorough understanding of PeLEDs’ environmental and economic impacts—essential information for future commercialization—is currently lacking. Here we assess the environmental and economic performance of 18 representative PeLEDs, aiming to identify effective industrial techniques to develop sustainable PeLEDs from a life-cycle perspective. We find that, like mature organic LEDs, PeLEDs show excellent environmental performance. In addition, we demonstrate that lead is not a major source of toxicity from PeLEDs. We estimate that, to commercialize PeLEDs and improve their sustainability, their lifetime should reach the order of 10,000 hours to compensate for the relative environmental impacts. The techno-economic assessment indicates that the cost of future PeLEDs will probably be in the vicinity of US$100 m–2, comparable to that of commercial organic LED panels. Overall, this study shows the potential of PeLEDs as next-generation lighting technology from environmental, economic and technical perspectives, providing insights relevant to their future development.
Whole-genome sequencing analysis identifies rare, large-effect noncoding variants and regulatory regions associated with circulating protein levels
The contribution of rare noncoding genetic variation to common phenotypes is largely unknown, as a result of a historical lack of population-scale whole-genome sequencing data and the difficulty of categorizing noncoding variants into functionally similar groups. To begin addressing these challenges, we performed a cis association analysis using whole-genome sequencing data, consisting of 1.1 billion variants, 123 million noncoding aggregate-based tests and 2,907 circulating protein levels in ~50,000 UK Biobank participants. We identified 604 independent rare noncoding single-variant associations with circulating protein levels. Unlike protein-coding variation, rare noncoding genetic variation was almost as likely to increase or decrease protein levels. Rare noncoding aggregate testing identified 357 conditionally independent associated regions. Of these, 74 (21%) were not detectable by single-variant testing alone. Our findings have important implications for the identification, and role, of rare noncoding genetic variation associated with common human phenotypes, including the importance of testing aggregates of noncoding variants.
Professional demand analysis for teaching Chinese to speakers of other languages: a text mining approach on internet recruitment platforms
The rapid development of international education in China highlights the growing importance of employment analysis in Teaching Chinese to Speakers of Other Languages (TCSOL). This study explores the enterprise demands for TCSOL professionals using text mining techniques to analyze recruitment data collected from four major platforms: Boss Zhipin, Zhaopin.com, 51job.com, and Liepin.com. Combining descriptive statistics, LDA topic modeling, BERT-BiLSTM-CRF-based named entity recognition, and co-occurrence network analysis were used. Results show that there is a high demand for TCSOL professionals, especially for small-scale enterprises located in first-tier cities such as Beijing, Shanghai, Guangzhou, and Shenzhen. Employers tend to favor candidates with at least a bachelor’s degree and 1–3 years of work experience. The topic model highlighted three central themes in job descriptions, emphasizing a shift toward a more diverse skill set. Named entity recognition identified essential attributes such as “communication ability”, “teaching experience”, “bachelor’s degree or above” and “responsibility” as core recruitment requirements. The co-occurrence network analysis revealed the importance of “teaching” and “priority” as core skill nodes. Time series analysis showed seasonal fluctuations in recruitment demand, peaking during spring recruitment and graduation periods. A hierarchical model of talent demand and development in TCSOL is proposed, integrating the perspectives of employers, job seekers, educators, and policymakers. This study provides valuable insights for aspiring TCSOL professionals, offering guidance to better align talent training with market needs and improve employment prospects.
Responses