Related Articles

LKB1 inactivation promotes epigenetic remodeling-induced lineage plasticity and antiandrogen resistance in prostate cancer

Epigenetic regulation profoundly influences the fate of cancer cells and their capacity to switch between lineages by modulating essential gene expression, thereby shaping tumor heterogeneity and therapy response. In castration-resistant prostate cancer (CRPC), the intricacies behind androgen receptor (AR)-independent lineage plasticity remain unclear, leading to a scarcity of effective clinical treatments. Utilizing single-cell RNA sequencing on both human and mouse prostate cancer samples, combined with whole-genome bisulfite sequencing and multiple genetically engineered mouse models, we investigated the molecular mechanism of AR-independent lineage plasticity and uncovered a potential therapeutic strategy. Single-cell transcriptomic profiling of human prostate cancers, both pre- and post-androgen deprivation therapy, revealed an association between liver kinase B1 (LKB1) pathway inactivation and AR independence. LKB1 inactivation led to AR-independent lineage plasticity and global DNA hypomethylation during prostate cancer progression. Importantly, the pharmacological inhibition of TET enzymes and supplementation with S-adenosyl methionine were found to effectively suppress AR-independent prostate cancer growth. These insights shed light on the mechanism driving AR-independent lineage plasticity and propose a potential therapeutic strategy by targeting DNA hypomethylation in AR-independent CRPC.

Genome-wide analysis tracks the emergence of intraspecific polyploids in Phragmites australis

Polyploidization plays an important role in plant speciation and adaptation. To address the role of polyploidization in grass diversification, we studied Phragmites australis, an invasive species with intraspecific variation in chromosome numbers ranging from 2n = 36 to 144. We utilized a combined analysis of ploidy estimation, phylogeny, population genetics and model simulations to investigate the evolution of P. australis. Using restriction site-associated DNA sequencing (RAD-seq), we conducted a genome-wide analysis of 88 individuals sourced from diverse populations worldwide, revealing the presence of six distinct intraspecific lineages with extensive genetic admixture. Each lineage was characterized by a specific ploidy level, predominantly tetraploid or octoploid, indicative of multiple independent polyploidization events. The population size of each lineage has declined moderately in history while remaining large, except for the North American native and the US Land types, which experienced constant population size contraction throughout their history. Our investigation did not identify direct association between polyploidization events and grass invasions. Nonetheless, we observed octoploid and hexaploid lineages at contact zones in Romania, Hungary, and South Africa, suggestively due to genomic conflicts arising from allotetraploid parental lineages.

Modulating neuroplasticity for chronic pain relief: noninvasive neuromodulation as a promising approach

Chronic neuropathic pain is a debilitating neuroplastic disorder that notably impacts the quality of life of millions of people worldwide. This complex condition, encompassing various manifestations, such as sciatica, diabetic neuropathy and postherpetic neuralgia, arises from nerve damage or malfunctions in pain processing pathways and involves various biological, physiological and psychological processes. Maladaptive neuroplasticity, known as central sensitization, plays a critical role in the persistence of chronic neuropathic pain. Current treatments for neuropathic pain include pharmacological interventions (for example, antidepressants and anticonvulsants), invasive procedures (for example, deep brain stimulation) and physical therapies. However, these approaches often have limitations and potential side effects. In light of these challenges, interest in noninvasive neuromodulation techniques as alternatives or complementary treatments for neuropathic pain is increasing. These methods aim to induce analgesia while reversing maladaptive plastic changes, offering potential advantages over conventional pharmacological practices and invasive methods. Recent technological advancements have spurred the exploration of noninvasive neuromodulation therapies, such as repetitive transcranial magnetic stimulation, transcranial direct current stimulation and transcranial ultrasound stimulation, as well as innovative transformations of invasive techniques into noninvasive methods at both the preclinical and clinical levels. Here this review aims to critically examine the mechanisms of maladaptive neuroplasticity in chronic neuropathic pain and evaluate the efficacy of noninvasive neuromodulation techniques in pain relief. By focusing on optimizing these techniques, we can better assess their short-term and long-term effects, refine treatment variables and ultimately improve the quality of neuropathic pain management.

Beclin 1 of megakaryocytic lineage cells is locally dispensable for platelet hemostasis but functions distally in bone homeostasis

The crosstalk between megakaryocytic lineage cells and the skeletal system has just begun to be explored but remains largely elusive. Using conditional gene knockout mouse models, we demonstrated that loss of Beclin 1 (Becn1), a major regulator of mammalian autophagy, exclusively in the megakaryocytic lineage disrupted autophagy in platelets but did not compromise megakaryopoiesis or the formation and function of platelets. Unexpectedly, conditional Becn1 deletion in male mice led to a remarkable increase in bone mass with improved bone quality, in association with a decrease in sex hormone binding globulin (SHBG) and an increase in free testosterone (FT). In vivo Becn1 overexpression in megakaryocytic lineage-specific cells reduced bone mass and quality, along with an increase in SHBG and a decrease in FT. Transplantation of wild-type bone marrow cells into megakaryocytic lineage Becn1-deficient male mice restored bone mass and normalized SHBG and FT. Furthermore, bilateral orchiectomy of Becn1f/f;Pf4-iCre mice, which are crippled with the production of testosterone, resulted in a reduction in bone mass and quality, whereas in vivo overexpression of SHBG, specifically in the liver of Becn1f/f;Pf4-iCre mice, decreased FT and reduced bone mass and quality. In addition, metformin treatment, which induces SHBG expression, reduced FT and normalized bone mass in Becn1f/f;Pf4-iCre mice. We thus concluded that Becn1 of the megakaryocytic lineage is dispensable locally for platelet hemostasis but limits bone mass by increasing SHBG, which in turn reduces the FT of male mice. Our findings highlight a mechanism by which Becn1 from megakaryocytic lineage cells distally balances bone growth.

Unlocking therapeutic potential: exploring cross-talk among emerging nuclear receptors to combat metabolic dysfunction in steatotic liver disease

Nuclear receptors (NRs) regulate cellular processes and serve as key targets in treating metabolic dysfunction-associated steatotic liver disease (MASLD) and steatohepatitis (MASH). Their ability to interact and influence each other’s signaling pathways introduces a complex yet underexplored dimension in the pharmacotherapy of MASLD and MASH. This review delineates the emerging NRs in this field—estrogen-related receptor alpha (ERRα), glucocorticoid receptor (GR), estrogen receptor alpha (ERα), liver receptor homolog-1 (LRH-1), and vitamin D receptor (VDR)—and their interplay with established NRs, including peroxisome proliferator-activated receptors (PPARα, PPARβ/δ, PPARγ), farnesoid X receptor (FXR), liver X receptors (LXR), hepatocyte nuclear factor 4α (HNF4α), and thyroid hormone receptor beta (THRβ). We discuss their collective impact on hepatic lipid metabolism, inflammation, fibrosis, and glucose homeostasis. We explore recent findings on dual NR crosstalk, via direct and indirect mechanisms, and discuss the potential of targeting receptor pathways using selective agonists, inverse agonists, antagonists, or specific modulators to combat MASLD and MASH. Elucidating NR interactions opens up new avenues for targeted therapies, emphasizing the critical need for further research in the evolving field of hepatology.

Responses

Your email address will not be published. Required fields are marked *