Related Articles

Myeloid neoplasms with PHF6 mutations: context-dependent genomic and prognostic characterization in 176 informative cases

Recent reports suggest a favorable prognosis for PHF6 mutation (PHF6MUT) in chronic myelomonocytic leukemia (CMML) and unfavorable in acute myeloid leukemia (AML). We accessed 176 consecutive patients with a spectrum of myeloid neoplasms with PHF6MUT, including AML (N = 67), CMML (N = 49), myelodysplastic syndromes (MDS; N = 36), myeloproliferative neoplasms (MPN; N = 16), and MDS/MPN (N = 8). PHF6 mutations were classified as nonsense (43%) or frameshift (30%) with the PHD2 domain being the most frequently (64%) affected region. Median follow-up was 25 months with 110 (63%) deaths and 44 allogenic transplants. Our top-line observations include (a) a distinctly superior overall survival (OS; 81 vs. 18 months; p < 0.01) and blast transformation-free survival (BTFS; “not reached” vs. 44 months; p < 0.01) in patients with CMML vs. those with other myeloid neoplasms, (ii) a higher than expected frequency of isolated loss of Y chromosome, in the setting of CMML (16% vs. expected 6%) and MDS (8% vs expected 2.5%), (iii) a significant association, in MDS, between PHF6MUT variant allele fraction (VAF) > 20% and inferior OS (HR 3.0, 95% CI 1.1–8.1, multivariate p = 0.02) as well as female gender and inferior BTFS (HR 26.8, 95% CI 1.9–368.3, multivariate p = 0.01), (iv) a relatively favorable median post-transplant survival of 46 months. Multivariable analysis also identified high-risk karyotype (HR 5.1, 95% CI 1.2–20.9, p = 0.02), and hemoglobin <10 g/dL (HR 2.7, 95% CI 1.0–7.2, p = 0.04), as independent predictors of inferior OS in patients with MDS. The current study provides disease-specific information on genotype and prognosis of PHF6-mutated myeloid neoplasms.

The guided fire from within: intratumoral administration of mRNA-based vaccines to mobilize memory immunity and direct immune responses against pathogen to target solid tumors

We investigated a novel cancer immunotherapy strategy that effectively suppresses tumor growth in multiple solid tumor models and significantly extends the lifespan of tumor-bearing mice by introducing pathogen antigens into tumors via mRNA-lipid nanoparticles. The pre-existing immunity against the pathogen antigen can significantly enhance the efficacy of this approach. In mice previously immunized with BNT162b2, an mRNA-based COVID-19 vaccine encoding the spike protein of the SARS-CoV-2 virus, intratumoral injections of the same vaccine efficiently tagged the tumor cells with mRNA-expressed spike protein. This action rapidly mobilized the pre-existing memory immunity against SARS-CoV-2 to kill the cancer cells displaying the spike protein, while concurrently reprogramming the tumor microenvironment (TME) by attracting immune cells. The partial elimination of tumor cells in a normalized TME further triggered extensive tumor antigen-specific T cell responses through antigen spreading, eventually resulting in potent and systemic tumor-targeting immune responses. Moreover, combining BNT162b2 treatment with anti-PD-L1 therapy yielded a more substantial therapeutic impact, even in “cold tumor” types that are typically less responsive to treatment. Given that the majority of the global population has acquired memory immunity against various pathogens through infection or vaccination, we believe that, in addition to utilizing the widely held immune memory against SARS-CoV-2 via COVID-19 vaccine, mRNA vaccines against other pathogens, such as Hepatitis B Virus (HBV), Common Human Coronaviruses (HCoVs), and the influenza virus, could be rapidly transitioned into clinical use and holds great promise in treating different types of cancer. The extensive selection of pathogen antigens expands therapeutic opportunities and may also overcome potential drug resistance.

International myeloma working group immunotherapy committee recommendation on sequencing immunotherapy for treatment of multiple myeloma

T-cell redirecting therapy (TCRT), specifically chimeric antigen receptor T-cell therapy (CAR T-cells) and bispecific T-cell engagers (TCEs) represent a remarkable advance in the treatment of multiple myeloma (MM). There are several products available around the world and several more in development targeting primarily B-cell maturation antigen (BCMA) and G protein–coupled receptor class C group 5 member D (GRPC5D). The relatively rapid availability of multiple immunotherapies brings the necessity to understand how a certain agent may affect the safety and efficacy of a subsequent immunotherapy so MM physicians and patients can aim at optimal sequential use of these therapies. The International Myeloma Working Group conveyed panel of experts to review patient and disease-related factors affecting efficacy and safety of immunotherapy, summarize existing information on sequencing therapy and provide a series of core recommendations.

High baseline levels of PD-L1 reduce the heterogeneity of immune checkpoint signature and sensitize anti-PD1 therapy in lung and colorectal cancers

Immune checkpoint blockade (ICB) therapy only induces durable responses in a subset of cancer patients. The underlying mechanisms of such selective efficacy remain largely unknown. By analyzing the expression profiles of immune checkpoint molecules in different statuses of murine tumors, we found that tumor progression generally randomly upregulated multiple immune checkpoints, thus increased the Heterogeneity of Immune checkpoint Signature (HIS) and resulted in immunotherapeutic resistance. Interestingly, overexpressing one pivotal immune checkpoint in a tumor hindered the upregulation of a majority of other immune checkpoint genes during tumor progression via suppressing interferon γ, resulting in HIS-low. Indeed, PD-L1 high-expression sensitized baseline large tumors to anti-PD1 therapy without altering the sensitivity of baseline small tumors. In line with these preclinical results, a retrospective analysis of a phase III study involving patients with non-small cell lung cancer (NSCLC) revealed that PD-L1 tumor proportion score (TPS) ≥ 50% more reliably predicted therapeutic response in NSCLC patients with baseline tumor volume (BTV)-large compared to patients with BTV-small. Notably, TPS combined with BTV significantly improved the predictive accuracy. Collectively, the data suggest that HIS reflects the dynamic features of tumor immune evasion and dictates the selective efficacy of ICB in a tumor size-dependent manner, providing a potential novel strategy to improve precision ICB. These findings highlight the application of ICB to earlier stages of cancer patients. The integration of PD-L1 with BTV may immediately improve patient stratification and prediction performance in the clinic.

Cross-species comparison reveals that Hmga1 reduces H3K27me3 levels to promote cardiomyocyte proliferation and cardiac regeneration

In contrast to adult mammalian hearts, the adult zebrafish heart efficiently replaces cardiomyocytes lost after injury. Here we reveal shared and species-specific injury response pathways and a correlation between Hmga1, an architectural non-histone protein, and regenerative capacity, as Hmga1 is required and sufficient to induce cardiomyocyte proliferation and required for heart regeneration. In addition, Hmga1 was shown to reactivate developmentally silenced genes, likely through modulation of H3K27me3 levels, poising them for a pro-regenerative gene program. Furthermore, AAV-mediated Hmga1 expression in injured adult mouse hearts led to controlled cardiomyocyte proliferation in the border zone and enhanced heart function, without cardiomegaly and adverse remodeling. Histone modification mapping in mouse border zone cardiomyocytes revealed a similar modulation of H3K27me3 marks, consistent with findings in zebrafish. Our study demonstrates that Hmga1 mediates chromatin remodeling and drives a regenerative program, positioning it as a promising therapeutic target to enhance cardiac regeneration after injury.

Responses

Your email address will not be published. Required fields are marked *