Related Articles

ToF-SIMS sputter depth profiling of interphases and coatings on lithium metal surfaces

Lithium metal as a negative electrode material offers ten times the specific capacity of graphitic electrodes, but its rechargeable operation poses challenges like excessive and continuous interphase formation, high surface area lithium deposits and safety issues. Improving the lithium | electrolyte interface and interphase requires powerful surface analysis techniques, such as ToF-SIMS sputter depth profiling.This study investigates lithium metal sections with an SEI layer by ToF-SIMS using different sputter ions. An optimal sputter ion is chosen based on the measured ToF-SIMS sputter depth profiles and SEM analysis of the surface damage. Further, this method is adapted to lithium metal foil with an intermetallic coating. ToF-SIMS sputter depth profiles in both polarities provide comprehensive insights into the coating structure. Both investigations highlight the value of ToF-SIMS sputter depth profiling in lithium metal battery research and offer guidance for future studies.

3D evolutionarily designed metamaterials for scattering maximization

The rapid growth in drone air traffic calls for enhanced radar surveillance systems to ensure reliable detection in challenging conditions. Increasing radar scattering cross-section can greatly improve detection reliability in civilian applications. Here, we introduce a concept of evolutionarily designed metamaterials in the form of multilayer stacks of arrays, featuring strongly coupled electric and magnetic resonators. These structures demonstrate a broadband end-fire scattering cross-section exceeding 1 m² at 10 GHz and, despite their compact footprint, achieve over 10% fractional bandwidth, meeting essential radar requirements for high-range resolution. While scattering cross-section and bandwidth are typically contradictory in resonant structures, this trend is circumvented by applying the resonance cascading principle, wherein a series of closely spaced, spectrally aligned resonant multipoles create a coherent response. The resonance cascading is engineered with the aid of multi-objective optimization, implemented on top of a genetic algorithm, operating in a large search space, encompassing over 100 independent variables. Experimentally realized parameters match typical scattering cross-sections of large airborne targets. Consequently, these performance characteristics enable the exploration of highly scattering structures as identifiers for small airborne targets, supporting effective radar-based air traffic monitoring in civilian applications, which we demonstrate through outdoor experiments using the DJI Mini 2 drone.

Improving the fast-charging capability of NbWO-based Li-ion batteries

The discovery of Nb-W-O materials years ago marks the milestone of charging a lithium-ion battery in minutes. Nevertheless, for many applications, charging lithium-ion battery within one minute is urgently demanded, the bottleneck of which largely lies in the lack of fundamental understanding of Li+ storage mechanisms in these materials. Herein, by visualizing Li+ intercalated into representative Nb16W5O55, we find that the fast-charging nature of such material originates from an interesting rate-dependent lattice relaxation process associated with the Jahn-Teller effect. Furthermore, in situ electron microscopy further reveals a directional, [010]-preferred Li+ transport mechanism in Nb16W5O55 crystals being the “bottleneck” toward fast charging that deprives the entry of any desolvated Li+ through the prevailing non-(010) surfaces. Hence, we propose a machine learning-assisted interface engineering strategy to swiftly collect desolvated Li+ and relocate them to (010) surfaces for their fast intercalation. As a result, a capacity of ≈ 116 mAh g−1 (68.5% of the theoretical capacity) at 80 C (45 s) is achieved when coupled with a Li negative electrode.

The WAVE complex in developmental and adulthood brain disorders

Actin polymerization and depolymerization are fundamental cellular processes required not only for the embryonic and postnatal development of the brain but also for the maintenance of neuronal plasticity and survival in the adult and aging brain. The orchestrated organization of actin filaments is controlled by various actin regulatory proteins. Wiskott‒Aldrich syndrome protein-family verprolin-homologous protein (WAVE) members are key activators of ARP2/3 complex-mediated actin polymerization. WAVE proteins exist as heteropentameric complexes together with regulatory proteins, including CYFIP, NCKAP, ABI and BRK1. The activity of the WAVE complex is tightly regulated by extracellular cues and intracellular signaling to execute its roles in specific intracellular events in brain cells. Notably, dysregulation of the WAVE complex and WAVE complex-mediated cellular processes confers vulnerability to a variety of brain disorders. De novo mutations in WAVE genes and other components of the WAVE complex have been identified in patients with developmental disorders such as intellectual disability, epileptic seizures, schizophrenia, and/or autism spectrum disorder. In addition, alterations in the WAVE complex are implicated in the pathophysiology of Alzheimer’s disease and Parkinson’s disease, as well as in behavioral adaptations to psychostimulants or maladaptive feeding.

A hybrid single quantum dot coupled cavity on a CMOS-compatible SiC photonic chip for Purcell-enhanced deterministic single-photon emission

The ability to control nonclassical light emission from a single quantum emitter by an integrated cavity may unleash new perspectives for integrated photonic quantum applications. However, coupling a single quantum emitter to cavity within photonic circuitry towards creation of the Purcell-enhanced single-photon emission is elusive due to the complexity of integrating active devices in low-loss photonic circuits. Here we demonstrate a hybrid micro-ring resonator (HMRR) coupled with self-assembled quantum dots (QDs) for cavity-enhanced deterministic single-photon emission. The HMRR cavity supports whispering-gallery modes with quality factors up to 7.8×103. By further introducing a micro-heater, we show that the photon emission of QDs can be locally and dynamically tuned over one free spectral ranges of the HMRR ( ~ 4 nm). This allows precise tuning of individual QDs in resonance with the cavity modes, thereby enhancing single-photon emission with a Purcell factor of about 4.9. Our results on the hybrid integrated cavities coupled with two-level quantum emitters emerge as promising devices for chip-based scalable photonic quantum applications.

Responses

Your email address will not be published. Required fields are marked *