Related Articles

Mechanochemical bistability of intestinal organoids enables robust morphogenesis

Reproducible pattern and form generation during embryogenesis is poorly understood. Intestinal organoid morphogenesis involves a number of mechanochemical regulators such as cell-type-specific cytoskeletal forces and osmotically driven lumen volume changes. It is unclear how these forces are coordinated in time and space to ensure robust morphogenesis. Here we show how mechanosensitive feedback on cytoskeletal tension gives rise to morphological bistability in a minimal model of organoid morphogenesis. In the model, lumen volume changes can impact the epithelial shape via both direct mechanical and indirect mechanosensitive mechanisms. We find that both bulged and budded crypt states are possible and dependent on the history of volume changes. We test key modelling assumptions via biophysical and pharmacological experiments to demonstrate how bistability can explain experimental observations, such as the importance of the timing of lumen shrinkage and robustness of the final morphogenetic state to mechanical perturbations. This suggests that bistability arising from feedback between cellular tensions and fluid pressure could be a general mechanism that coordinates multicellular shape changes in developing systems.

Regulation of intestinal immunity by dietary fatty acids

Dietary fatty acids are absorbed through the intestine and are fundamental for cellular energy provision and structural formation. Dietary fatty acids profoundly affect intestinal immunity and influence the development and progression of inflammatory bowel disease, intestinal infections and tumors. Although different types of fatty acids exert differential roles in intestinal immunity, a western diet, rich in saturated fatty acids with abundant carbohydrates and studied as high-fat diet (HFD) in animal experiments, disturbs intestinal homeostasis and plays a pathogenic role in intestinal inflammatory diseases. Here, we review recent findings on the regulation of intestinal immunity by dietary fatty acids, focusing on HFD. We summarize HFD-altered immune responses leading to susceptibility to intestinal pathology and dissect the mechanisms involving the impact of HFD on immune cells, intestinal epithelial cells and the microbiota. Understanding the perturbation of intestinal immunity by HFD will provide new strategies for prevention and treatment of intestinal inflammatory diseases.

Influence of the early-life gut microbiota on the immune responses to an inhaled allergen

Antibiotics, among the most used medications in children, affect gut microbiome communities and metabolic functions. These changes in microbiota structure can impact host immunity. We hypothesized that early-life microbiome alterations would lead to increased susceptibility to allergy and asthma. To test this, mouse pups between postnatal days 5–9 were orally exposed to water (control) or to therapeutic doses of azithromycin or amoxicillin. Later in life, these mice were sensitized and challenged with a model allergen, house dust mite (HDM), or saline. Mice with early-life azithromycin exposure that were challenged with HDM had increased IgE and IL-13 production by CD4+ T cells compared to unexposed mice; early-life amoxicillin exposure led to fewer abnormalities. To test that the microbiota contained the immunological cues to alter IgE and cytokine production after HDM challenge, germ-free mice were gavaged with fecal samples of the antibiotic-perturbed microbiota. Gavage of adult germ-free mice did not result in altered HDM responses, however, their offspring, which acquired the antibiotic-perturbed microbiota at birth showed elevated IgE levels and CD4+ cytokines in response to HDM, and altered airway reactivity. These studies indicate that early-life microbiota composition can heighten allergen-driven Th2/Th17 immune pathways and airway responses in an age-dependent manner.

Cannabinoid-2 receptor depletion promotes non-alcoholic fatty liver disease in mice via disturbing gut microbiota and tryptophan metabolism

Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. NAFLD encompasses a spectrum of liver damage starting with liver steatosis and lipid disorders presented as the hallmark. Cannabinoid-2 receptor (CB2R) is the receptor of endocannabinoids mainly expressed in immune cells. Our preliminary study revealed the preventative role of CB2R in liver injury related to lipid metabolism. In this study, we aimed to explore the role of CB2R in NAFLD and the underlying mechanism related to microbial community. High-fat diet-induced NAFLD model was established in mice. We found that hepatic CB2R expression was significantly reduced in NAFLD mice and CB2R–/– mice fed with normal chow. Interestingly, cohousing with or transplanted with microbiota from WT mice, or treatment with an antibiotic cocktail ameliorated the NAFLD phenotype of CB2R–/– mice. The gut dysbiosis in CB2R–/– mice including increased Actinobacteriota and decreased Bacteroidota was similar to that of NAFLD patients and NAFLD mice. Microbial functional analysis and metabolomics profiling revealed obviously disturbed tryptophan metabolism in NAFLD patients and NAFLD mice, which were also seen in CB2R–/– mice. Correlation network showed that the disordered tryptophan metabolites such as indolelactic acid (ILA) and xanthurenic acid in CB2R-/- mice were mediated by gut dysbiosis and related to NAFLD severity indicators. In vitro and in vivo validation experiments showed that the enriched tryptophan metabolites ILA aggravated NAFLD phenotypes. These results demonstrate the involvement of CB2R in NAFLD, which is related to gut microbiota-mediated tryptophan metabolites. Our findings highlight CB2R and the associated microbes and tryptophan metabolites as promising targets for the treatment of NAFLD.

Intestinal epithelium in early life

Rapid development of the fetal and neonatal intestine is required to meet the growth requirements of early life and form a protective barrier against external insults encountered by the intestinal mucosa. The fetus receives nutrition via the placenta and is protected from harmful pathogens in utero, which leads to intestinal development in a relatively quiescent environment. Upon delivery, the intestinal mucosa is suddenly tasked with providing host defense and meeting nutritional demands. To serve these functions, an array of specialized epithelial cells develop from intestinal stem cells starting in utero and continuing postnatally. Intestinal disease results when these homeostatic processes are interrupted. For preterm neonates, the most common pathology resulting from epithelial barrier dysfunction is necrotizing enterocolitis (NEC). In this review, we discuss the normal development and function of the intestinal epithelium in early life as well as how disruption of these processes can lead to NEC.

Responses

Your email address will not be published. Required fields are marked *