Related Articles

Past hydroclimate extremes in Europe driven by Atlantic jet stream and recurrent weather patterns

The jet stream over the Atlantic–European sector is relevant for weather and climate in Europe. It generates temperature extremes and steers moisture and flood-propelling weather systems to Europe or facilitates the development of atmospheric blocks, which can lead to drought. Ongoing climate change may alter the jet characteristics, affecting weather extremes. However, little is known about the past interannual-to-decadal variability of the jet stream. Here we analyse the strength, tilt and latitude of the Atlantic–European jet from 1421 to 2023 in an ensemble of monthly and daily reconstructions of atmospheric fields. We compare the variability of these jet indices with blocking frequency and cyclonic activity data and with drought and flood reconstructions in Europe. Summer drought is enhanced in Central Europe in periods with a poleward-shifted jet. An equatorward-shifted jet associated with decreased blocking leads to frequent floods in Western Europe and the Alps, particularly in winter. Recurrent weather patterns causing floods often characterize an entire season, such that an association between peak discharge and jet indices is seen on seasonal or even annual scales. Jet strength and tilt are significantly influenced by volcanic eruptions. Our 600-year perspective shows that recent changes in the jet indices are within the past variability and cannot be drivers of increasing flood and drought frequency.

Controllable tip exposure of ultramicroelectrodes coated by diamond-like carbon via direct microplasma jet for enhanced stability and fidelity in single-cell recording

Precise and long-term electroanalysis at the single-cell level is crucial for the accurate diagnosis and monitoring of brain diseases. The reliable protection in areas outside the signal acquisition points at sharp ultramicroelectrode (UME) tips has a significant impact on the sensitivity, fidelity, and stability of intracellular neural signal recording. However, it is difficult for existing UMEs to achieve controllable exposure of the tip functional structure, which affects their ability to resist environmental interference and shield noise, resulting in unsatisfactory signal-to-noise ratio and signal fidelity of intracellular recordings. To address this issue, we chose a dense and electrochemically stable diamond-like carbon (DLC) film as the UME protection coating and developed a method to precisely control the exposed degree of the functional structure by directly fixed-point processing of the UME tip by the strong site-selectivity and good controllability of the atmospheric microplasma jet. By analyzing the interaction between the microplasma jet and the UME tip, as well as the changes in the removal length and microstructure of UME tips with processing time, the exposed tip length was precisely controlled down to the submicron scale. Biocompatibility experiments, electrochemical aging tests and real-time intracellular pH recording experiments have demonstrated that the DLC-UME with effective tip protection processed by microplasma jet has the potential to enable long-term detection of intracellular high-fidelity signals.

A force-sensitive adhesion GPCR is required for equilibrioception

Equilibrioception (sensing of balance) is essential for mammals to perceive and navigate the three-dimensional world. A rapid mechanoelectrical transduction (MET) response in vestibular hair cells is crucial for detecting position and motion. Here, we identify the G protein-coupled receptor (GPCR) LPHN2/ADGRL2, expressed on the apical membrane of utricular hair cells, as essential for maintaining normal balance. Loss of LPHN2 specifically in hair cells impaired both balance behavior and the MET response in mice. Functional analyses using hair-cell-specific Lphn2-knockout mice and an LPHN2-specific inhibitor suggest that LPHN2 regulates tip-link-independent MET currents at the apical surface of utricular hair cells. Mechanistic studies in a heterologous system show that LPHN2 converts force stimuli into increased open probability of transmembrane channel-like protein 1 (TMC1). LPHN2-mediated force sensation triggers glutamate release and calcium signaling in utricular hair cells. Importantly, reintroducing LPHN2 into the hair cells of Lphn2-deficient mice restores vestibular function and MET response. Our data reveal that a mechanosensitive GPCR is required for equilibrioception.

Cyclic jetting enables microbubble-mediated drug delivery

The pursuit of targeted therapies capable of overcoming biological barriers, including the blood–brain barrier, has spurred the investigation of stimuli-responsive microagents that can improve therapeutic efficacy and reduce undesirable side effects. Intravenously administered, ultrasound-responsive microbubbles are promising agents with demonstrated potential in clinical trials, but the mechanism underlying drug absorption remains unclear. Here we show that ultrasound-driven single microbubbles puncture the cell membrane and induce drug uptake through stable cyclic microjets. Our theoretical models successfully reproduce the observed bubble and cell dynamic responses. We find that cyclic jets arise from shape instabilities, as opposed to classical inertial jets that are driven by pressure gradients, enabling microjet formation at mild ultrasound pressures below 100 kPa. We also establish a threshold for bubble radial expansion beyond which microjets form and facilitate cellular permeation and show that the stress generated by microjetting outperforms previously suggested mechanisms by at least an order of magnitude. Overall, this work elucidates the physics behind microbubble-mediated targeted drug delivery and provides the criteria for its effective and safe application.

Responses

Your email address will not be published. Required fields are marked *