Related Articles
Segment Anything for Microscopy
Accurate segmentation of objects in microscopy images remains a bottleneck for many researchers despite the number of tools developed for this purpose. Here, we present Segment Anything for Microscopy (μSAM), a tool for segmentation and tracking in multidimensional microscopy data. It is based on Segment Anything, a vision foundation model for image segmentation. We extend it by fine-tuning generalist models for light and electron microscopy that clearly improve segmentation quality for a wide range of imaging conditions. We also implement interactive and automatic segmentation in a napari plugin that can speed up diverse segmentation tasks and provides a unified solution for microscopy annotation across different microscopy modalities. Our work constitutes the application of vision foundation models in microscopy, laying the groundwork for solving image analysis tasks in this domain with a small set of powerful deep learning models.
Predictive learning as the basis of the testing effect
A prominent learning phenomenon is the testing effect, meaning that testing enhances retention more than studying. Emergent frameworks propose fundamental (Hebbian and predictive) learning principles as its basis. Predictive learning posits that learning occurs based on the contrast (error) between a prediction and the feedback on that prediction (prediction error). Here, we propose that in testing (but not studying) scenarios, participants predict potential answers, and its contrast with the subsequent feedback yields a prediction error, which facilitates testing-based learning. To investigate this, we developed an associative memory network incorporating Hebbian and/or predictive learning, together with an experimental design where human participants studied or tested English-Swahili word pairs followed by recognition. Three behavioral experiments (N = 80, 81, 62) showed robust testing effects when feedback was provided. Model fitting (of 10 different models) suggested that only models incorporating predictive learning can account for the breadth of data associated with the testing effect. Our data and model suggest that predictive learning underlies the testing effect.
Understanding learning through uncertainty and bias
Learning allows humans and other animals to make predictions about the environment that facilitate adaptive behavior. Casting learning as predictive inference can shed light on normative cognitive mechanisms that improve predictions under uncertainty. Drawing on normative learning models, we illustrate how learning should be adjusted to different sources of uncertainty, including perceptual uncertainty, risk, and uncertainty due to environmental changes. Such models explain many hallmarks of human learning in terms of specific statistical considerations that come into play when updating predictions under uncertainty. However, humans also display systematic learning biases that deviate from normative models, as studied in computational psychiatry. Some biases can be explained as normative inference conditioned on inaccurate prior assumptions about the environment, while others reflect approximations to Bayesian inference aimed at reducing cognitive demands. These biases offer insights into cognitive mechanisms underlying learning and how they might go awry in psychiatric illness.
Advancing extrapolative predictions of material properties through learning to learn using extrapolative episodic training
Recent advancements in machine learning have demonstrated its potential to significantly accelerate the discovery of new materials. Central to this progress is the development of rapidly computable property predictors, which allow identifying novel materials with the desired properties from vast material spaces. However, the limited availability of data resources poses a significant challenge in data-driven material research, particularly hindering the exploration of innovative materials beyond the boundaries of existing data. Although machine-learning predictors are inherently interpolative, establishing a general methodology to create an extrapolative predictor remains a fundamental challenge. In this study, we leveraged the attention-based architecture of neural networks and a meta-learning algorithm to enhance extrapolative generalization capabilities. Meta-learners trained repeatedly on arbitrarily generated extrapolative tasks show outstanding generalization for unexplored material spaces. Through the tasks of predicting the physical properties of polymeric materials and hybrid organic–inorganic perovskites, we highlight the potential of such extrapolatively trained models, particularly their ability to rapidly adapt to unseen material domains in transfer-learning scenarios.
Generative language models exhibit social identity biases
Social identity biases, particularly the tendency to favor one’s own group (ingroup solidarity) and derogate other groups (outgroup hostility), are deeply rooted in human psychology and social behavior. However, it is unknown if such biases are also present in artificial intelligence systems. Here we show that large language models (LLMs) exhibit patterns of social identity bias, similarly to humans. By administering sentence completion prompts to 77 different LLMs (for instance, ‘We are…’), we demonstrate that nearly all base models and some instruction-tuned and preference-tuned models display clear ingroup favoritism and outgroup derogation. These biases manifest both in controlled experimental settings and in naturalistic human–LLM conversations. However, we find that careful curation of training data and specialized fine-tuning can substantially reduce bias levels. These findings have important implications for developing more equitable artificial intelligence systems and highlight the urgent need to understand how human–LLM interactions might reinforce existing social biases.
Responses