Related Articles
3D printing of micro-nano devices and their applications
In recent years, the utilization of 3D printing technology in micro and nano device manufacturing has garnered significant attention. Advancements in 3D printing have enabled achieving sub-micron level precision. Unlike conventional micro-machining techniques, 3D printing offers versatility in material selection, such as polymers. 3D printing technology has been gradually applied to the general field of microelectronic devices such as sensors, actuators and flexible electronics due to its adaptability and efficacy in microgeometric design and manufacturing processes. Furthermore, 3D printing technology has also been instrumental in the fabrication of microfluidic devices, both through direct and indirect processes. This paper provides an overview of the evolving landscape of 3D printing technology, delineating the essential materials and processes involved in fabricating microelectronic and microfluidic devices in recent times. Additionally, it synthesizes the diverse applications of these technologies across different domains.
Management practices and manufacturing firm responses to a randomized energy audit
Increasing the efficiency of industrial energy use is widely considered important for mitigating climate change. We randomize assignment of an energy audit intervention aimed at improving energy efficiency and reducing energy expenditures of small- and medium-sized metal processing firms in Shandong Province, China, and examine impacts on energy outcomes and interactions with firms’ management practices. We find that the intervention reduced firms’ unit cost of electricity by 8% on average. Firms with more developed structured management practices showed higher rates of recommendation adoption. However, the post-intervention electricity unit cost reduction is larger in firms with less developed practices, primarily driven by a single recommendation that corrected managers’ inaccurate reporting of transformer usage at baseline, lowering their electricity costs. By closing management-associated gaps in awareness of energy expenditures, energy audit programmes may reduce a firm’s unit cost of energy but have an ambiguous impact on energy use and climate change.
Advanced electrode processing for lithium-ion battery manufacturing
Lithium-ion batteries (LIBs) need to be manufactured at speed and scale for their use in electric vehicles and devices. However, LIB electrode manufacturing via conventional wet slurry processing is energy-intensive and costly, challenging the goal to achieve sustainable, affordable and facile manufacturing of high-performance LIBs. In this Review, we discuss advanced electrode processing routes (dry processing, radiation curing processing, advanced wet processing and 3D-printing processing) that could reduce energy usage and material waste. Maxwell-type dry processing is a scalable alternative to conventional processing and has relatively low manufacturing cost and energy consumption. Radiation curing processing could enable high-throughput manufacturing, but binder selection is limited to certain radiation curable chemistries. 3D-printing processing can produce electrodes with diverse architectures and improved rate performance, but scalability is yet to be demonstrated. 3D-printing processing is good for special applications where throughput and cost can be compromised for performance.
Diversity of biomass usage pathways to achieve emissions targets in the European energy system
Biomass is a versatile renewable energy source with applications across the energy system, but it is a limited resource and its usage needs prioritization. We use a sector-coupled European energy system model to explore near-optimal solutions for achieving emissions targets. We find that provision of biogenic carbon has higher value than bioenergy provision. Energy system costs increase by 20% if biomass is excluded at a net-negative (−110%) emissions target and by 14% at a net-zero target. Dispatchable bioelectricity covering ~1% of total electricity generation strengthens supply reliability. Otherwise, it is not crucial in which sector biomass is used, if combined with carbon capture to enable negative emissions and feedstock for e-fuel production. A shortage of renewable electricity or hydrogen supply primarily increases the value of using biomass for fuel production. Results are sensitive to upstream emissions of biomass, carbon sequestration capacity and costs of direct air capture.
Brine management with zero and minimal liquid discharge
Zero liquid discharge (ZLD) and minimal liquid discharge (MLD) are brine management approaches that aim to reduce the environmental impacts of brine discharge and recover water for reuse. ZLD maximizes water recovery and avoids the needs for brine disposal, but is expensive and energy-intensive. MLD (which reduces the brine volume and recovers some water) has been proposed as a practical and cost-effective alternative to ZLD, but brine disposal is needed. In this Review, we examine the concepts, technologies and industrial applications of ZLD and MLD. These brine management strategies have current and potential applications in the desalination, energy, mining and semiconductor industries, all of which produce large volumes of brine. Brine concentration and crystallization in ZLD and MLD often rely on mechanical vapour compression and thermal crystallizers, which are effective but energy-intensive. Novel engineered systems for brine volume reduction and crystallization are under active development to achieve MLD and/or ZLD. These emerging systems, such as membrane distillation, electrodialytic crystallization and solvent extraction desalination, still face challenges to outcompete mechanical vapour compression and thermal crystallizers, underscoring the critical need to maximize the full potential of reverse osmosis to attain ultrahigh water recovery. Brine valorization has potential to partially offset the cost of ZLD and MLD, provided that resource recovery can be integrated into treatment trains economically and in accordance with regulations.
Responses