Related Articles

Optofluidic paper-based analytical device for discriminative detection of organic substances via digital color coding

Developing a portable yet affordable method for the discrimination of chemical substances with good sensitivity and selectivity is essential for on-site visual detection of unknown substances. Herein, we propose an optofluidic paper-based analytical device (PAD) that consists of a macromolecule-driven flow (MDF) gate and photonic crystal (PhC) coding units, enabling portable and scalable detection and discrimination of various organic chemical, mimicking the olfactory system. The MDF gate is designed for precise flow control of liquid analytes, which depends on intermolecular interactions between the polymer at the MDF gate and the liquid analytes. Subsequently, the PhC coding unit allows for visualizing the result obtained from the MDF gate and generating differential optical patterns. We fabricate an optofluidic PAD by integrating two coding units into a three-dimensional (3D) microfluidic paper within a 3D-printed cartridge. The optofluidic PADs clearly distinguish 11 organic chemicals with digital readout of pattern recognition from colorimetric signals. We believe that our optofluidic coding strategy mimicking the olfactory system opens up a wide range of potential applications in colorimetric monitoring of chemicals observed in environment.

Achievement of a vacuum-levitated metal mechanical oscillator with ultra-low damping rate at room temperature

A vacuum-levitated metal mechanical oscillator with an ultra-low damping rate is an ideal tool for detecting mass-related short-range forces; however, its realization at room temperature has not yet been achieved, limiting its practical applications. In this study, we developed such an oscillator using a diamagnetically levitated bismuth sphere. We derived an accurate general formula for the sphere’s eddy current damping rate and, based on this, constructed the oscillator from microparticles, successfully reducing its damping rate experimentally to (144 ± 6) μHz—nearly three orders of magnitude lower than that of the untreated sphere. This improvement allows the sub-millimeter-sized levitated metal mechanical oscillator to theoretically achieve a force sensitivity of ((5.17pm 0.12),,{mbox{fN}}/sqrt{{mbox{Hz}},}) and an acceleration sensitivity of ((0.30pm 0.01),,{mbox{ng}}/sqrt{{mbox{Hz}},}) at room temperature. Calculations indicate that using this sphere as a test mass can detect gravitational forces from sub-milligram sources, highlighting its potential for short-range force sensing and the exploration of quantum gravity.

Grover’s algorithm in a four-qubit silicon processor above the fault-tolerant threshold

Spin qubits in silicon are strong contenders for the realization of a practical quantum computer, having demonstrated single- and two-qubit gates with fidelities above the fault-tolerant threshold, and entanglement of three qubits. However, maintaining high-fidelity operations while increasing the qubit count remains challenging and therefore only two-qubit algorithms have been executed. Here we utilize a four-qubit silicon processor with all control fidelities above the fault-tolerant threshold and demonstrate a three-qubit Grover’s search algorithm with a ~95% probability of finding the marked state. Our processor is made of three phosphorus atoms precision-patterned into isotopically pure silicon, which localise one electron. The long coherence times of the qubits enable single-qubit fidelities above 99.9% for all qubits. Moreover, the efficient single-pulse multi-qubit operations enabled by the electron–nuclear hyperfine interaction facilitate controlled-Z gates between all pairs of nuclear spins with fidelities above 99% when using the electron as an ancilla. These control fidelities, combined with high-fidelity non-demolition readout of all nuclear spins, allow the creation of a three-qubit Greenberger–Horne–Zeilinger state with 96.2% fidelity. Looking ahead, coupling neighbouring nuclear spin registers, as the one shown here, via electron–electron exchange may enable larger, fault-tolerant quantum processors.

Switching on and off the spin polarization of the conduction band in antiferromagnetic bilayer transistors

Antiferromagnetic conductors with suitably broken spatial symmetries host spin-polarized bands, which lead to transport phenomena commonly observed in metallic ferromagnets. In bulk materials, it is the given crystalline structure that determines whether symmetries are broken and spin-polarized bands are present. Here we show that, in the two-dimensional limit, an electric field can control the relevant symmetries. To this end, we fabricate a double-gate transistor based on bilayers of van der Waals antiferromagnetic semiconductor CrPS4 and show how a perpendicular electric displacement field can switch the spin polarization of the conduction band on and off. Because conduction band states with opposite spin polarizations are hosted in the different layers and are spatially separated, these devices also give control over the magnetization of the electrons that are accumulated electrostatically. Our experiments show that double-gated CrPS4 transistors provide a viable platform to create gate-induced conductors with near unity spin polarization at the Fermi level, as well as devices with a full electrostatic control of the total magnetization of the system.

Electric-field manipulation of magnetization in an insulating dilute ferromagnet through piezoelectromagnetic coupling

The electric field control of magnetization is of significant interest in materials science due to potential applications in many devices such as sensors, actuators, and magnetic memories. Here, we report magnetization changes generated by an electric field in ferromagnetic Ga1−xMnxN grown by molecular beam epitaxy. Two classes of phenomena have been revealed. First, over a wide range of magnetic fields, the magnetoelectric signal is odd in the electric field and reversible. Employing a macroscopic spin model and atomistic Landau-Lifshitz-Gilbert theory with Langevin dynamics, we demonstrate that the magnetoelectric response results from the inverse piezoelectric effect that changes the trigonal single-ion magnetocrystalline anisotropy. Second, in the metastable regime of ferromagnetic hystereses, the magnetoelectric effect becomes non-linear and irreversible in response to a time-dependent electric field, which can reorient the magnetization direction. Interestingly, our observations are similar to those reported for another dilute ferromagnetic semiconductor Crx(Bi1−ySby)1−xTe3, in which magnetization was monitored as a function of the gate electric field. Those results constitute experimental support for theories describing the effects of time-dependent perturbation upon glasses far from thermal equilibrium in terms of an enhanced effective temperature.

Responses

Your email address will not be published. Required fields are marked *