Related Articles

Smartphone conjunctiva photography for malaria risk stratification in asymptomatic school age children

Malaria remains a major global health challenge. Although effective control relies on testing all suspected cases, asymptomatic infections in school-age children are frequently overlooked. Advances in retinal imaging and computer vision have enhanced malaria detection. However, noninvasive, point-of-care malaria detection remains unrealized, partly because of the need for specialized equipment. Here we report radiomic analyses of 4302 photographs of the palpebral conjunctiva captured using unmodified smartphone cameras from asymptomatic 405 participants aged 5 to 15 years to predict malaria risk. Our neural network classification model of radiomic features achieves an area under the receiver operating characteristic curve of 0.76 with 95% confidence intervals from 0.68 to 0.84 in distinguishing between malaria-infected and non-infected cases in endemic regions. Photographing the inner eyelid provides the advantages of easy accessibility and direct exposure to the microvasculature. This mobile health approach has the potential for malaria prescreening and managing febrile illness in resource-limited settings.

The anti-circumsporozoite antibody response to repeated, seasonal booster doses of the malaria vaccine RTS,S/AS01E

The recently deployed RTS,S/AS01E malaria vaccine induces a strong antibody response to the circumsporozoite protein (CSP) on the surface of the Plasmodium falciparum sporozoite which is associated with protection. The anti-CSP antibody titre falls rapidly after primary vaccination, associated with a decline in efficacy, but the antibody titre and the protective response can be partially restored by a booster dose of vaccine, but this response is also transitory. In many malaria- endemic areas of Africa, children are at risk of malaria, including severe malaria, until they are five years of age or older and to sustain protection from malaria for this period by vaccination with RTS,S/AS01E, repeated booster doses of vaccine may be required. However, there is little information about the immune response to repeated booster doses of RTS,S/AS01E. In many malaria-endemic areas of Africa, the burden of malaria is largely restricted to the rainy season and, therefore, a recent trial conducted in Burkina Faso and Mali explored the impact of repeated annual booster doses of RTS,S/AS01E given immediately prior to the malaria transmission season until children reached the age of five years. Anti-CSP antibody titres were measured in sera obtained from a randomly selected subset of children enrolled in this trial collected before and one month after three priming and four annual booster doses of vaccine using the GSK ELISA developed at the University of Ghent and, in a subset of these samples, by a multiplex assay developed at the University of Oxford. Three priming doses of RTS,S/AS01E induced a strong anti-CSP antibody response (GMT 368.9 IU/mL). Subsequent annual, seasonal booster doses induced a strong, but lower, antibody response; the GMT after the fourth booster was 128.5 IU/mL. Children whose antibody response was in the upper and middle terciles post vaccination had a lower incidence of malaria during the following year than children in the lowest tercile. Results obtained with GSK ELISA and the Oxford Multiplex assay were strongly correlated (Pearson’s correlation coefficient, r = 0.94; 95% CI, 0.93–0.95). Although anti-CSP antibody titres declined after repeated booster doses of RTS,S/AS01E a high, although declining, level of efficacy was sustained suggesting that there may have been changes in the characteristics of the anti-CSP antibody following repeated booster doses.

Ethical considerations in AI for child health and recommendations for child-centered medical AI

There does not exist any previous comprehensive review on AI ethics in child health or any guidelines for management, unlike in adult medicine. This review describes ethical principles in AI for child health and provides recommendations for child-centered medical AI. We also introduce the Pediatrics EthicAl Recommendations List for AI (PEARL-AI) framework for clinicians and AI developers to ensure ethical AI enabled systems in healthcare for children.

Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia

X-linked hypophosphataemia (XLH) is a rare metabolic bone disorder caused by pathogenic variants in the PHEX gene, which is predominantly expressed in osteoblasts, osteocytes and odontoblasts. XLH is characterized by increased synthesis of the bone-derived phosphaturic hormone fibroblast growth factor 23 (FGF23), which results in renal phosphate wasting with consecutive hypophosphataemia, rickets, osteomalacia, disproportionate short stature, oral manifestations, pseudofractures, craniosynostosis, enthesopathies and osteoarthritis. Patients with XLH should be provided with multidisciplinary care organized by a metabolic bone expert. Historically, these patients were treated with frequent doses of oral phosphate supplements and active vitamin D, which was of limited efficiency and associated with adverse effects. However, the management of XLH has evolved in the past few years owing to the availability of burosumab, a fully humanized monoclonal antibody that neutralizes circulating FGF23. Here, we provide updated clinical practice recommendations for the diagnosis and management of XLH to improve outcomes and quality of life in these patients.

Signature of pre-pregnancy microbiome in infertile women undergoing frozen embryo transfer with gestational diabetes mellitus

This study aims to evaluate differences in gut microbiota structures between infertile women undergoing frozen embryo transfer (FET) with gestational diabetes mellitus (GDM) and healthy controls (HCs), and to identify potential markers. We comprehensively enrolled 193 infertile women undergoing FET (discovery cohort: 38 HCs and 31 GDM; validation cohort: 85 HCs and 39 GDM). Gut microbial profiles of the discovery cohort were investigated during the pre-pregnancy (Pre), first trimester (T1), and second trimester (T2). The microbial community in the HCs group remained relatively stable throughout the pregnancy, while the microbial structure alteration occurred in the GDM group during T2. A model based on ten bacteria and ten metabolites simultaneously was used to predict the risk of GDM developing in the pre-pregnancy state with the ROC value of 0.712. Algorithms on the basis of marker species and biochemical parameters can be used as effective tools for GDM risk evaluation before pregnancy.

Responses

Your email address will not be published. Required fields are marked *