Related Articles

Spatially resolved transcriptomics and graph-based deep learning improve accuracy of routine CNS tumor diagnostics

The diagnostic landscape of brain tumors integrates comprehensive molecular markers alongside traditional histopathological evaluation. DNA methylation and next-generation sequencing (NGS) have become a cornerstone in central nervous system (CNS) tumor classification. A limiting requirement for NGS and methylation profiling is sufficient DNA quality and quantity, which restrict its feasibility. Here we demonstrate NePSTA (neuropathology spatial transcriptomic analysis) for comprehensive morphological and molecular neuropathological diagnostics from single 5-µm tissue sections. NePSTA uses spatial transcriptomics with graph neural networks for automated histological and molecular evaluations. Trained and evaluated across 130 participants with CNS malignancies and healthy donors across four medical centers, NePSTA predicts tissue histology and methylation-based subclasses with high accuracy. We demonstrate the ability to reconstruct immunohistochemistry and genotype profiling on tissue with minimal requirements, inadequate for conventional molecular diagnostics, demonstrating the potential to enhance tumor subtype identification with implications for fast and precise diagnostic workup.

Historical loss weakens competitive behavior by remodeling ventral hippocampal dynamics

Competitive interactions are pervasive within biological populations, where individuals engage in fierce disputes over vital resources for survival. Before the establishment of a social hierarchy within the population, this competition becomes even more intense. Historical experiences of competition significantly influence the competitive performance; individuals with a history of persistent loss are less likely to initiate attacks or win escalated contests. However, it remains unclear how historical loss directly affects the evolution of mental processes during competition and alters responses to ongoing competitive events. Here, we utilized a naturalistic food competition paradigm to track the competitive patterns of mutually unfamiliar competitors and found that a history of loss leads to reduced competitive performance. By tracking the activity of ventral hippocampal neuron ensembles, we identified clusters of neurons that responded differently to behavioral events during the competition, with their reactivity modulated by previous losses. Using a Recurrent Switch Linear Dynamical System (rSLDS), we revealed rotational dynamics in the ventral hippocampus (vHPC) during food competition, where different discrete internal states corresponded to different behavioral strategies. Moreover, historical loss modulates competitive behavior by remodeling the characteristic attributes of this rotational dynamic system. Finally, we found that an evolutionarily conserved glutamate receptor-associated protein, glutamate receptor-associated protein 1 (Grina), plays an important role in this process. By continuously monitoring the association between the attributes of the dynamic system and competitiveness, we found that restoring Grina expression effectively reversed the impact of historical loss on competitive performance. Together, our study reveals the rotational dynamics in the ventral hippocampus during competition and elucidates the underlying mechanisms through which historical loss shapes these processes.

Maternal immune activation imprints translational dysregulation and differential MAP2 phosphorylation in descendant neural stem cells

Alterations induced by maternal immune activation (MIA) during gestation impact the subsequent neurodevelopment of progeny, a process that in humans, has been linked to the development of several neuropsychiatric conditions. To undertake a comprehensive examination of the molecular mechanisms governing MIA, we have devised an in vitro model based on neural stem cells (NSCs) sourced from fetuses carried by animals subjected to Poly I:C treatment. These neural progenitors demonstrate proliferative capacity and can be effectively differentiated into both neurons and glial cells. Transcriptomic, proteomic, and phosphoproteomic analyses conducted on these cellular models, in conjunction with counterparts from control treatments, revealed discernible shifts in the expression levels of a specific subset of proteins implicated in neuronal function. Furthermore, the phosphoproteomic data highlighted a discernible discrepancy in the basal phosphorylation of proteins between differentiated cells from both experimental groups, particularly within proteins associated with cytoskeletal architecture and synaptic functionality, notably those belonging to the MAP family. Observed alterations in MAP phosphorylation were found to potentially have functional consequences as they correlate with changes in neuronal plasticity and the establishment of neuronal synapses. Our data agrees with previous published observations and further underscore the importance of MAP2 phosphorylation state on its function and the impact that this protein has in neuronal structure and function.

Emotions and individual differences shape human foraging under threat

A common behavior in natural environments is foraging for rewards. However, this is often in the presence of predators. Therefore, one of the most fundamental decisions for humans, as for other animals, is how to apportion time between reward-motivated pursuit behavior and threat-motivated checking behavior. To understand what affects how people strike this balance, we developed an ecologically inspired task and looked at both within-participant dynamics (moods) and between-participant individual differences (questionnaires about real-life behaviors) in two large internet samples (n = 374 and n = 702) in a cross-sectional design. For the within-participant dynamics, we found that people regulate task-evoked stress homeostatically by changing behavior (increasing foraging and hiding). Individual differences, even in superficially related traits (apathy–anhedonia and anxiety–compulsive checking) reliably mapped onto unique behaviors. Worse task performance, due to maladaptive checking, was linked to gender (women checked excessively) and specific anxiety-related traits: somatic anxiety (reduced self-reported checking due to worry) and compulsivity (self-reported disorganized checking). While anhedonia decreased self-reported task engagement, apathy, strikingly, improved overall task performance by reducing excessive checking. In summary, we provide a multifaceted paradigm for assessment of checking for threat in a naturalistic task that is sensitive to both moods as they change throughout the task and clinical dimensions. Thus, it could serve as an objective measurement tool for future clinical studies interested in threat, vigilance or behavior–emotion interactions in contexts requiring both reward seeking and threat avoidance.

Human-structure and human-structure-human interaction in electro-quasistatic regime

Augmented living equipped with electronic devices requires widespread connectivity and a low-loss communication medium for humans to interact with ambient technologies. However, traditional radiative radio frequency-based communications require wireless pairing to ensure specificity during information exchange, and with their broadcasting nature, these incur energy absorption from the surroundings. Recent advancements in electroquasistatic body-coupled communication have shown great promise by utilizing conductive objects like the human body as a communication medium. Here we propose a fundamental set of modalities of non-radiative interaction by guiding electroquasistatic signals through conductive structures between humans and surrounding electronic devices. Our approach offers pairing-free communication specificity and lower path loss during touch. Here, we propose two modalities: Human-Structure Interaction and Human-Structure Human Interaction with wearable devices. We validate our theoretical understanding with numerical electromagnetic simulations and experiments to show the feasibility of the proposed approach. A demonstration of the real-time transfer of an audio signal employing an human body communications-based Human-Structure Interaction link is presented to highlight the practical impact of this work. The proposed techniques can potentially influence Human-Machine Interaction research, including the development of assistive technology for augmented living and personalized healthcare.

Responses

Your email address will not be published. Required fields are marked *