Related Articles

Multi-population GWAS detects robust marker associations in a newly established six-rowed winter barley breeding program

Genome-wide association study (GWAS) is a powerful tool for identifying marker-trait associations that can accelerate breeding progress. Yet, its power is typically constrained in newly established breeding programs where large phenotypic and genotypic datasets have not yet accumulated. Expanding the dataset by inclusion of data from well-established breeding programs with many years of phenotyping and genotyping can potentially address this problem. In this study we performed single- and multi-population GWAS on heading date and lodging in four barley breeding populations with varying combinations of row-type and growth habit. Focusing on a recently established 6-rowed winter (6RW) barley population, single-population GWAS hardly resulted in any significant associations. Nevertheless, the combination of the 6RW target population with other populations in multi-population GWAS detected four and five robust candidate quantitative trait loci for heading date and lodging, respectively. Of these, three remained undetected when analysing the combined populations individually. Further, multi-population GWAS detected markers capturing a larger proportion of genetic variance in 6RW. For multi-population GWAS, we compared the findings of a univariate model (MP1) with a multivariate model (MP2). While both models surpassed single-population GWAS in power, MP2 offered a significant advantage by having more realistic assumptions while pointing towards robust marker-trait associations across populations. Additionally, comparisons of GWAS findings for MP2 and single-population GWAS allowed identification of population-specific loci. In conclusion, our study presents a promising approach to kick-start genomics-based breeding in newly established breeding populations.

Plasma proteome variation and its genetic determinants in children and adolescents

Our current understanding of the determinants of plasma proteome variation during pediatric development remains incomplete. Here, we show that genetic variants, age, sex and body mass index significantly influence this variation. Using a streamlined and highly quantitative mass spectrometry-based proteomics workflow, we analyzed plasma from 2,147 children and adolescents, identifying 1,216 proteins after quality control. Notably, the levels of 70% of these were associated with at least one of the aforementioned factors, with protein levels also being predictive. Quantitative trait loci (QTLs) regulated at least one-third of the proteins; between a few percent and up to 30-fold. Together with excellent replication in an additional 1,000 children and 558 adults, this reveals substantial genetic effects on plasma protein levels, persisting from childhood into adulthood. Through Mendelian randomization and colocalization analyses, we identified 41 causal genes for 33 cardiometabolic traits, emphasizing the value of protein QTLs in drug target identification and disease understanding.

The contribution of genetic determinants of blood gene expression and splicing to molecular phenotypes and health outcomes

The biological mechanisms through which most nonprotein-coding genetic variants affect disease risk are unknown. To investigate gene-regulatory mechanisms, we mapped blood gene expression and splicing quantitative trait loci (QTLs) through bulk RNA sequencing in 4,732 participants and integrated protein, metabolite and lipid data from the same individuals. We identified cis-QTLs for the expression of 17,233 genes and 29,514 splicing events (in 6,853 genes). Colocalization analyses revealed 3,430 proteomic and metabolomic traits with a shared association signal with either gene expression or splicing. We quantified the relative contribution of the genetic effects at loci with shared etiology, observing 222 molecular phenotypes significantly mediated by gene expression or splicing. We uncovered gene-regulatory mechanisms at disease loci with therapeutic implications, such as WARS1 in hypertension, IL7R in dermatitis and IFNAR2 in COVID-19. Our study provides an open-access resource on the shared genetic etiology across transcriptional phenotypes, molecular traits and health outcomes in humans (https://IntervalRNA.org.uk).

Dietary protein restriction elevates FGF21 levels and energy requirements to maintain body weight in lean men

Dietary protein restriction increases energy expenditure and enhances insulin sensitivity in mice. However, the effects of a eucaloric protein-restricted diet in healthy humans remain unexplored. Here, we show in lean, healthy men that a protein-restricted diet meeting the minimum protein requirements for 5 weeks necessitates an increase in energy intake to uphold body weight, regardless of whether proteins are replaced with fats or carbohydrates. Upon reverting to the customary higher protein intake in the following 5 weeks, energy requirements return to baseline levels, thus preventing weight gain. We also show that fasting plasma FGF21 levels increase during protein restriction. Proteomic analysis of human white adipose tissue and in FGF21-knockout mice reveal alterations in key components of the electron transport chain within white adipose tissue mitochondria. Notably, in male mice, these changes appear to be dependent on FGF21. In conclusion, we demonstrate that maintaining body weight during dietary protein restriction in healthy, lean men requires a higher energy intake, partially driven by FGF21-mediated mitochondrial adaptations in adipose tissue.

Childhood trauma cortisol and immune cell glucocorticoid transcript levels are associated with increased risk for suicidality in adolescence

Rising adolescent suicide rates present a growing unmet need. Childhood trauma (CT) has been associated with altered cortisol dynamics and immune cell glucocorticoid reactivity, yet their additive longer-term contributions to later suicide outcomes are less clear. The current study compared CT scores, resting salivary free cortisol and mononuclear cell gene expression levels of the nuclear receptor, subfamily 3, member 1 (NR3C1) coding the glucocorticoid receptor, and its co-chaperons FKBP prolyl isomerase 5 (FKBP5) and KIT Ligand (KITLG), between a cohort of adolescents presenting with a suicidal crisis requiring hospital treatment, and matched healthy controls. Childhood trauma scores and glucocorticoid measures were significantly altered among suicidal adolescents, and CT scores correlated with mononuclear cell glucocorticoid transcripts. Both CT scores and glucocorticoid measures explained substantial additive portions of the variance in adolescent suicidality. Long-term perturbations in cortisol dynamics and immune cell glucocorticoid response elements denote dysregulated immune stress reactivity, and may possess value in prediction and point to modifiable-risk factors in prevention of clinically significant suicidality during the brittle period of adolescence, years after childhood trauma exposure.

Responses

Your email address will not be published. Required fields are marked *