Related Articles
Ultrasensitive photoelectric detection with room temperature extremum
Room-temperature photodetection holds pivotal significance in diverse applications such as sensing, imaging, telecommunications, and environmental remote sensing due to its simplicity, versatility, and indispensability. Although different kinds of photon and thermal detectors have been realized, high sensitivity of photodetection with room temperature extremum is not reported until now. Herein, we find evident peaks in the photoelectric response originated from the anomalous excitonic insulator phase transition in tantalum nickel selenide (Ta2NiSe5) for room-temperature optimized photodetection from visible light to terahertz ranges. Extreme sensitivity of photoconductive detector with specific detectivity (D*) of 5.3 × 1011 cm·Hz1/2·W−1 and electrical bandwidth of 360 kHz is reached in the terahertz range, which is one to two orders of magnitude improvement compared to that of the state-of-the-art room-temperature terahertz detectors. The van der Waals heterostructure of Ta2NiSe5/WS2 is further constructed to suppress the dark current at room temperature with much improved ambient D* of 4.1 × 1012 cm·Hz1/2·W−1 in the visible wavelength, rivaling that of the typical photodetectors, and superior photoelectric performance in the terahertz range compared to the photoconductor device. Our results open a new avenue for optoelectronics via excitonic insulator phase transition in broad wavelength bands and pave the way for applications in sensitive environmental and remote sensing at room temperature.
Array of micro-epidermal actuators for noninvasive pediatric flexible conductive hearing aids
Corrective surgeries and implantable aids are highly invasive for pediatric patients with conductive hearing loss. Flexible hearing aids are a noninvasive solution to address pediatric hearing loss. These aids generate vibrations on epidermal layer of skin behind the ear using micro-epidermal actuators to bypass the auditory canal. However, the major challenge is to generate a strong level of vibrations that can reach cochlea. Here, we designed, fabricated, and characterized arrays of micro-epidermal actuators to increase the vibration level from the flexible aids, improve frequency response and control the directionality of vibrations. Our human subject study showed that the flexible hearing aid with an array of actuators improved the hearing threshold by an average of 13.8 dB at 500 Hz, compared to a device with a single actuator. Also, the flexible aid with two actuators enhanced the hearing threshold by 30.5 dB at 1 kHz and 20.5 dB across 0.25–8 kHz versus unaided hearing.
Recommendations for mitochondria transfer and transplantation nomenclature and characterization
Intercellular mitochondria transfer is an evolutionarily conserved process in which one cell delivers some of their mitochondria to another cell in the absence of cell division. This process has diverse functions depending on the cell types involved and physiological or disease context. Although mitochondria transfer was first shown to provide metabolic support to acceptor cells, recent studies have revealed diverse functions of mitochondria transfer, including, but not limited to, the maintenance of mitochondria quality of the donor cell and the regulation of tissue homeostasis and remodelling. Many mitochondria-transfer mechanisms have been described using a variety of names, generating confusion about mitochondria transfer biology. Furthermore, several therapeutic approaches involving mitochondria-transfer biology have emerged, including mitochondria transplantation and cellular engineering using isolated mitochondria. In this Consensus Statement, we define relevant terminology and propose a nomenclature framework to describe mitochondria transfer and transplantation as a foundation for further development by the community as this dynamic field of research continues to evolve.
Bottom-up fabrication of 2D Rydberg exciton arrays in cuprous oxide
Solid-state platforms provide exceptional opportunities for advancing on-chip quantum technologies by enhancing interaction strengths through coupling, scalability, and robustness. Cuprous oxide (Cu2O) has recently emerged as a promising medium for scalable quantum technology due to its high-lying Rydberg excitonic states, akin to those in hydrogen atoms. To harness these nonlinearities for quantum applications, the confinement dimensions must match the Rydberg blockade size, which can reach several microns in Cu2O. Using a CMOS-compatible growth technique, this study demonstrates the bottom-up fabrication of site-selective arrays of Cu2O microparticles. We observed Rydberg excitons up to the principal quantum number n = 5 within these Cu2O arrays on a quartz substrate and analyzed the spatial variation of their spectrum across the array, showing robustness and reproducibility on a large chip. These results lay the groundwork for the deterministic growth of Cu2O around photonic structures, enabling substantial light-matter interaction on integrated photonic platforms and paving the way for scalable, on-chip quantum devices.
Carbon-coating effect on the performance of photolithographically-structured Si nanowires for lithium-ion microbattery anodes
The applications of three-dimensional Si nanowire anodes in lithium-ion microbatteries have attracted great interest in the realization of high-capacity and integrated energy storage devices for microelectronics. Combining Si nanowires with carbon can improve the anode performance by aiding its mechanical stability during cycling. Here, we incorporate photolithography, cryogenic dry etching, and thermal evaporation as the commonly used methods in semiconductor technologies to fabricate carbon-coated Si nanowire anodes. The addition of amorphous carbon to Si nanowire anodes has an impact on increasing the initial areal capacity. However, a gradual decrease to 0.3 mAh cm−2 at the 100th cycle can be observed. The post-mortem analyses reveal different morphologies of Si nanowire anodes after cycling. It is indicated that carbon coating can help Si nanowires to suppress their volume expansion and reduce the excessively produced amorphous Si granules found in pristine Si nanowire anodes.
Responses