Related Articles
A positron emission tomography tracer for the imaging of oxidative stress in the central nervous system
Reactive oxygen and nitrogen species (RONS) contribute to the pathogenesis of neurodegeneration, but the inability to detect RONS in vivo in the central nervous system has confounded the interpretation of results of clinical trials of antioxidants. Here we report the synthesis and characterization of a positron emission tomography (PET) probe, [18F]fluoroedaravone ([18F]FEDV), for the in vivo quantification of oxidative stress. Derived from the antioxidant edaravone, the probe can diffuse through the blood–brain barrier and is stable in human plasma. In mice, PET imaging with [18F]FEDV allowed for the detection of RONS after intrastriatal injection of sodium nitroprusside, in the middle cerebral artery after stroke by photothrombosis, and in brains with tauopathy. When using dynamic PET imaging coupled with parametric mapping, the sensitivity of [18F]FEDV-PET to RONS allowed for the detection of increased oxidative stress. [18F]FEDV-PET could be used to quantify RONS longitudinally in vivo and to assess the results of clinical studies of antioxidants.
Alzheimer’s disease biological PET staging using plasma p217+tau
Plasma phospho-tau biomarkers, such as p217+tau, excel at identifying Alzheimer’s disease (AD) neuropathology. However, their ability to substitute for tau PET to identify AD biological stage is unclear.
Investigating dopaminergic abnormalities in schizophrenia and first-episode psychosis with normative modelling and multisite molecular neuroimaging
Molecular neuroimaging techniques, like PET and SPECT, offer invaluable insights into the brain’s in-vivo biology and its dysfunction in neuropsychiatric patients. However, the transition of molecular neuroimaging into diagnostics and precision medicine has been limited to a few clinical applications, hindered by issues like practical feasibility, high costs, and high between-subject heterogeneity of neuroimaging measures. In this study, we explore the use of normative modelling (NM) to identify individual patient alterations by describing the physiological variability of molecular functions. NM potentially addresses challenges such as small sample sizes and diverse acquisition protocols typical of molecular neuroimaging studies. We applied NM to two PET radiotracers targeting the dopaminergic system ([11C]-(+)-PHNO and [18F]FDOPA) to create a reference-cohort model of healthy controls. The models were subsequently utilized on different independent cohorts of patients with psychosis in different disease stages and treatment outcomes. Our results showed that patients with psychosis exhibited a higher degree of extreme deviations (~3-fold increase) than controls, although this pattern was heterogeneous, with minimal overlap of extreme deviations topology (max 20%). We also confirmed that striatal [18F]FDOPA signal, when referenced to a normative distribution, can predict treatment response (striatal AUC ROC: 0.77–0.83). In conclusion, our results indicate that normative modelling can be effectively applied to molecular neuroimaging after proper harmonization, enabling insights into disease mechanisms and advancing precision medicine. In addition, the method is valuable in understanding the heterogeneity of patient populations and can contribute to maximising cost efficiency in studies aimed at comparing cases and controls.
Intratumoral and peritumoral PET/CT-based radiomics for non-invasively and dynamically predicting immunotherapy response in NSCLC
We aimed to develop a machine learning model based on intratumoral and peritumoral 18F-FDG PET/CT radiomics to non-invasively and dynamically predict the response to immunotherapy in non-small cell lung cancer (NSCLC).
Metformin-regulated glucose flux from the circulation to the intestinal lumen
Through a retrospective analysis of existing FDG PET-MRI images, we recently demonstrated that metformin increases the accumulation of FDG in the intestinal lumen, suggesting that metformin stimulates glucose excretion into the intestine. However, the details of this phenomenon remain unclear. We here investigate the detailed dynamics of intestinal glucose excretion, including the rate of excretion and the metabolism of excreted glucose, in both the presence and absence of metformin.
Responses