Related Articles

Deep Bayesian active learning using in-memory computing hardware

Labeling data is a time-consuming, labor-intensive and costly procedure for many artificial intelligence tasks. Deep Bayesian active learning (DBAL) boosts labeling efficiency exponentially, substantially reducing costs. However, DBAL demands high-bandwidth data transfer and probabilistic computing, posing great challenges for conventional deterministic hardware. Here we propose a memristor stochastic gradient Langevin dynamics in situ learning method that uses the stochastic of memristor modulation to learn efficiency, enabling DBAL within the computation-in-memory (CIM) framework. To prove the feasibility and effectiveness of the proposed method, we implemented in-memory DBAL on a memristor-based stochastic CIM system and successfully demonstrated a robot’s skill learning task. The inherent stochastic characteristics of memristors allow a four-layer memristor Bayesian deep neural network to efficiently identify and learn from uncertain samples. Compared with cutting-edge conventional complementary metal-oxide-semiconductor-based hardware implementation, the stochastic CIM system achieves a remarkable 44% boost in speed and could conserve 153 times more energy.

The logarithmic memristor-based Bayesian machine

The demand for explainable and energy-efficient artificial intelligence (AI) systems for edge computing has led to growing interest in electronic systems dedicated to Bayesian inference. Traditional designs of such systems often rely on stochastic computing, which offers high energy efficiency but suffers from latency issues and struggles with low-probability values. Here, we introduce the logarithmic memristor-based Bayesian machine, an innovative design that leverages the unique properties of memristors and logarithmic computing as an alternative to stochastic computing. We present a prototype machine fabricated in a hybrid CMOS/hafnium-oxide memristor process. We validate the versatility and robustness of our system through experimental validation and extensive simulations in two distinct applications: gesture recognition and sleep stage classification. The logarithmic approach simplifies the computational model by converting multiplications into additions and enhances the handling of low-probability events, which are crucial in time-dependent tasks. Our results demonstrate that the logarithmic Bayesian machine achieves superior performance in terms of accuracy and energy efficiency compared to its stochastic counterpart, particularly in scenarios involving complex probabilistic models. This approach enables the development of energy-efficient and reliable AI systems for edge devices.

Derivation of human toxicokinetic parameters and internal threshold of toxicological concern for tenuazonic acid through a human intervention trial and hierarchical Bayesian population modeling

Tenuazonic acid (TeA), a mycotoxin produced by Alternaria alternata, contaminates various food commodities and is known to cause acute and chronic health effects. However, the lack of human toxicokinetic (TK) data and the reliance on external exposure estimates have stalled a comprehensive risk assessment for TeA.

Brain inspired iontronic fluidic memristive and memcapacitive device for self-powered electronics

Ionic fluidic devices are gaining interest due to their role in enabling self-powered neuromorphic computing systems. In this study, we present an approach that integrates an iontronic fluidic memristive (IFM) device with low input impedance and a triboelectric nanogenerator (TENG) based on ferrofluid (FF), which has high input impedance. By incorporating contact separation electromagnetic (EMG) signals with low input impedance into our FF TENG device, we enhance the FF TENG’s performance by increasing energy harvesting, thereby enabling the autonomous powering of IFM devices for self-powered computing. Further, replicating neuronal activities using artificial iontronic fluidic systems is key to advancing neuromorphic computing. These fluidic devices, composed of soft-matter materials, dynamically adjust their conductance by altering the solution interface. We developed voltage-controlled memristor and memcapacitor memory in polydimethylsiloxane (PDMS) structures, utilising a fluidic interface of FF and polyacrylic acid partial sodium salt (PAA Na+). The confined ion interactions in this system induce hysteresis in ion transport across various frequencies, resulting in significant ion memory effects. Our IFM successfully replicates diverse electric pulse patterns, making it highly suitable for neuromorphic computing. Furthermore, our system demonstrates synapse-like learning functions, storing and retrieving short-term (STM) and long-term memory (LTM). The fluidic memristor exhibits dynamic synapse-like features, making it a promising candidate for the hardware implementation of neural networks. FF TENG/EMG device adaptability and seamless integration with biological systems enable the development of advanced neuromorphic devices using iontronic fluidic materials, further enhanced by intricate chemical designs for self-powered electronics.

Edge states with hidden topology in spinner lattices

Symmetries – whether explicit, latent, or hidden – are fundamental to understanding topological materials. This work introduces a prototypical spring-mass model that extends beyond established canonical models, revealing topological edge states with distinct profiles at opposite edges. These edge states originate from hidden symmetries that become apparent only in deformation coordinates, as opposed to the conventional displacement coordinates used for bulk-boundary correspondence. Our model, realized through the intricate connectivity of a spinner chain, demonstrates experimentally distinct edge states at opposite ends. By extending this framework to two dimensions, we explore the conditions required for such edge waves and their hidden symmetry in deformation coordinates. We also show that these edge states are robust against disorders that respect the hidden symmetry. This research paves the way for advanced material designs with tailored boundary conditions and edge state profiles, offering potential applications in fields such as photonics, acoustics, and mechanical metamaterials.

Responses

Your email address will not be published. Required fields are marked *