Related Articles
Networks and identity drive the spatial diffusion of linguistic innovation in urban and rural areas
Cultural innovation (e.g., music, beliefs, language) tends to be adopted regionally. The geographic area where innovation is adopted is often attributed to one of two factors: (i) speakers adopting new behaviors that signal their demographic identities (i.e., an identity effect), or (ii) these behaviors spreading through homophilous networks (i.e., a network effect). In this study, we show that network and identity play complementary roles in determining where new language is adopted; thus, modeling the diffusion of lexical innovation requires incorporating both network and identity. We develop an agent-based model of cultural adoption, and validate geographic properties in our simulations against a dataset of innovative words that we identify from a 10% sample of Twitter (e.g., fleeky, birbs, ubering). Using our model, we are able to directly test the roles of network and identity by comparing a model that combines network and identity against simulated network-only and identity-only counterfactuals. We show that both effects influence different mechanisms of diffusion. Specifically, network principally drives spread among urban counties via weak-tie diffusion, while identity plays a disproportionate role in transmission among rural counties via strong-tie diffusion. Diffusion between urban and rural areas, a key component in innovation spreading nationally, requires both network and identity. Our work suggests that models must integrate both factors in order to understand and reproduce the adoption of innovation.
Enhancer reprogramming: critical roles in cancer and promising therapeutic strategies
Transcriptional dysregulation is a hallmark of cancer initiation and progression, driven by genetic and epigenetic alterations. Enhancer reprogramming has emerged as a pivotal driver of carcinogenesis, with cancer cells often relying on aberrant transcriptional programs. The advent of high-throughput sequencing technologies has provided critical insights into enhancer reprogramming events and their role in malignancy. While targeting enhancers presents a promising therapeutic strategy, significant challenges remain. These include the off-target effects of enhancer-targeting technologies, the complexity and redundancy of enhancer networks, and the dynamic nature of enhancer reprogramming, which may contribute to therapeutic resistance. This review comprehensively encapsulates the structural attributes of enhancers, delineates the mechanisms underlying their dysregulation in malignant transformation, and evaluates the therapeutic opportunities and limitations associated with targeting enhancers in cancer.
Systematic identification of cancer pathways and potential drugs for intervention through multi-omics analysis
The pathogenesis of cancer is complicated, and different types of cancer often exhibit different gene mutations resulting in different omics profiles. The purpose of this study was to systematically identify cancer-specific biological pathways and potential cancer-targeting drugs. We collectively analyzed the transcriptomics and proteomics data from 16 common types of human cancer to study the mechanism of carcinogenesis and seek potential treatment. Statistical approaches were applied to identify significant molecular targets and pathways related to each cancer type. Potential anti-cancer drugs were subsequently retrieved that can target these pathways. The number of significant pathways linked to each cancer type ranged from four (stomach cancer) to 112 (acute myeloid leukemia), and the number of therapeutic drugs that can target these cancer related pathways, ranged from one (ovarian cancer) to 97 (acute myeloid leukemia and non-small-cell lung carcinoma). As a validation of our method, some of these drugs are FDA approved therapies for their corresponding cancer type. Our findings provide a rich source of testable hypotheses that can be applied to deconvolute the complex underlying mechanisms of human cancer and used to prioritize and repurpose drugs as anti-cancer therapies.
Targeting of TAMs: can we be more clever than cancer cells?
With increasing incidence and geography, cancer is one of the leading causes of death, reduced quality of life and disability worldwide. Principal progress in the development of new anticancer therapies, in improving the efficiency of immunotherapeutic tools, and in the personification of conventional therapies needs to consider cancer-specific and patient-specific programming of innate immunity. Intratumoral TAMs and their precursors, resident macrophages and monocytes, are principal regulators of tumor progression and therapy resistance. Our review summarizes the accumulated evidence for the subpopulations of TAMs and their increasing number of biomarkers, indicating their predictive value for the clinical parameters of carcinogenesis and therapy resistance, with a focus on solid cancers of non-infectious etiology. We present the state-of-the-art knowledge about the tumor-supporting functions of TAMs at all stages of tumor progression and highlight biomarkers, recently identified by single-cell and spatial analytical methods, that discriminate between tumor-promoting and tumor-inhibiting TAMs, where both subtypes express a combination of prototype M1 and M2 genes. Our review focuses on novel mechanisms involved in the crosstalk among epigenetic, signaling, transcriptional and metabolic pathways in TAMs. Particular attention has been given to the recently identified link between cancer cell metabolism and the epigenetic programming of TAMs by histone lactylation, which can be responsible for the unlimited protumoral programming of TAMs. Finally, we explain how TAMs interfere with currently used anticancer therapeutics and summarize the most advanced data from clinical trials, which we divide into four categories: inhibition of TAM survival and differentiation, inhibition of monocyte/TAM recruitment into tumors, functional reprogramming of TAMs, and genetic enhancement of macrophages.
Mechanical signatures in cancer metastasis
The cancer metastatic cascade includes a series of mechanical barrier-crossing events, involving the physical movement of cancer cells from their primary location to a distant organ. This review describes the physical changes that influence tumour proliferation, progression, and metastasis. We identify potential mechanical signatures at every step of the metastatic cascade and discuss some latest mechanobiology-based therapeutic interventions to highlight the importance of interdisciplinary approaches in cancer diagnosis and treatment.
Responses