Related Articles
Fabrication and modulation of flexible electromagnetic metamaterials
Flexible electromagnetic metamaterials are a potential candidate for the ideal material for electromagnetic control due to their unique physical properties and structure. Flexible electromagnetic metamaterials can be designed to exhibit specific responses to electromagnetic waves within a particular frequency range. Research shows that flexible electromagnetic metamaterials exhibit significant electromagnetic control characteristics in microwave, terahertz, infrared and other frequency bands. It has a wide range of applications in the fields of electromagnetic wave absorption and stealth, antennas and microwave devices, communication information and other fields. In this review, the currently popular fabrication methods of flexible electromagnetic metamaterials are first summarized, highlighting the electromagnetic modulation capability in different frequency bands. Then, the applications of flexible electromagnetic metamaterials in four aspects, namely electromagnetic stealth, temperature modulation, electromagnetic shielding, and wearable sensors, are elaborated and summarized in detail. In addition, this review also discusses the shortcomings and limitations of flexible electromagnetic metamaterials for electromagnetic control. Finally, the conclusion and perspective of the electromagnetic properties of flexible electromagnetic metamaterials are presented.
In vivo surface-enhanced Raman scattering techniques: nanoprobes, instrumentation, and applications
Surface-enhanced Raman scattering (SERS) has emerged as a powerful tool in various biomedical applications, including in vivo imaging, diagnostics, and therapy, largely due to the development of near-infrared (NIR) active SERS substrates. This review provides a comprehensive overview of SERS-based applications in vivo, focusing on key aspects such as the design considerations for SERS nanoprobes and advancements in instrumentation. Topics covered include the development of NIR SERS substrates, Raman label compounds (RLCs), protective coatings, and the conjugation of bioligands for targeted imaging and therapy. The review also discusses microscope-based configurations such as scanning, widefield imaging, and fiber-optic setups. Recent advances in using SERS nanoprobes for in vivo sensing, diagnostics, biomolecule screening, multiplex imaging, intraoperative guidance, and multifunctional cancer therapy are highlighted. The review concludes by addressing challenges in the clinical translation of SERS nanoprobes and outlines future directions, emphasizing opportunities for advancing biomedical research and clinical applications.
Airborne optical imaging technology: a road map in CIOMP
Airborne optical imaging can flexibly obtain the intuitive information of the observed scene from the air, which plays an important role of modern optical remote sensing technology. Higher resolution, longer imaging distance, and broader coverage are the unwavering pursuits in this research field. Nevertheless, the imaging environment during aerial flights brings about multi-source dynamic interferences such as temperature, air pressure, and complex movements, which forms a serious contradiction with the requirements of precision and relative staticity in optical imaging. As the birthplace of Chinese optical industry, the Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP) has conducted the research on airborne optical imaging for decades, resulting in rich innovative achievements, completed research conditions, and exploring a feasible development path. This article provides an overview of the innovative work of CIOMP in the field of airborne optical imaging, sorts out the milestone nodes, and predicts the future development direction of this discipline, with the aim of providing inspiration for related research.
Using high pressure to investigate the stability of a high entropy wurtzite structured (MnFeCuAgZnCd)S
High entropy metal chalcogenides are an emergent class of materials that have shown exceptional promise in applications such as energy storage, catalysis, and thermoelectric energy conversion. However, the stability of these materials to factors other than temperature are as yet unknown. Here we set out to assess the stability of the high entropy metal sulfide (MnFeCuAgZnCd)S with high pressure (up to 9 GPa), compared to an enthalpically stabilised Ag3CuS2, and a quasi-stable (MnFeZnCd)S. Compression and pressure-annealing of (MnFeCuAgZnCd)S showed diffusion-controlled time and pressure dependent exsolution of jalpaite (Ag3CuS2) from the bulk. Bulk materials characterisation found minor phase impurities and possible elemental localisations in (MnFeCuAgZnCd)S prior to pressure-annealing. To gain deeper understanding of the material pre- and post-pressure annealing at the nanoscale an advanced technique was used which combined machine learning, unsupervised clustering analysis of STEM-EDX mapping with scanning precession electron diffraction (SPED), which revealed a chemically distinct post-pressure annealed jalpaite exsolved from (MnFeCuAgZnCd)S.
Relay-projection microscopic telescopy
The fundamental trade-off between spatial resolution and imaging distance poses a significant challenge for current imaging techniques, such as those used in modern biomedical diagnosis and remote sensing. Here, we introduce a new conceptual method for imaging dynamic amplitude-phase-mixed objects, termed relay-projection microscopic telescopy (rPMT), which fundamentally challenges conventional light collection techniques by employing non-line-of-sight light collection through square-law relay-projection mechanisms. We successfully resolved tiny features measuring 2.76 μm, 22.10 μm, and 35.08 μm for objects positioned at distances of 1019.0 mm, 26.4 m, and 96.0 m, respectively, from single-shot spatial power spectrum images captured on the relay screen; these results demonstrate that the resolution capabilities of rPMT significantly surpass the Abbe diffraction limit of the 25 mm-aperture camera lens at the respective distances, achieving resolution improvement factors of 7.9, 25.4, and 58.2. The rPMT exhibits long-distance, wide-range, high-resolution imaging capabilities that exceed the diffraction limit of the camera lens and the focusing range limit, even when the objects are obscured by a scattering medium. The rPMT enables telescopic imaging from centimeters to beyond hundreds of meters with micrometer-scale resolution using simple devices, including a laser diode, a portable camera, and a diffusely reflecting whiteboard. Unlike contemporary high-resolution imaging techniques, our method does not require labeling reagents, wavefront modulation, synthetic receive aperture, or ptychography scanning, which significantly reduce the complexity of the imaging system and enhance the application practicality. This method holds particular promise for in-vivo label-free dynamic biomedical microscopic imaging diagnosis and remote surveillance of small objects.
Responses