Related Articles
The evolution of lithium-ion battery recycling
Demand for lithium-ion batteries (LIBs) is increasing owing to the expanding use of electrical vehicles and stationary energy storage. Efficient and closed-loop battery recycling strategies are therefore needed, which will require recovering materials from spent LIBs and reintegrating them into new batteries. In this Review, we outline the current state of LIB recycling, evaluating industrial and developing technologies. Among industrial technologies, pyrometallurgy can be broadly applied to diverse electrode materials but requires operating temperatures of over 1,000 °C and therefore has high energy consumption. Hydrometallurgy can be performed at temperatures below 200 °C and has material recovery rates of up to 93% for lithium, nickel and cobalt, but it produces large amounts of wastewater. Developing technologies such as direct recycling and upcycling aim to increase the efficiency of LIB recycling and rely on improved pretreatment processes with automated disassembly and cleaner mechanical separation. Additionally, the range of materials recovered from spent LIBs is expanding from the cathode materials recycled with established methods to include anode materials, electrolytes, binders, separators and current collectors. Achieving an efficient recycling ecosystem will require collaboration between recyclers, battery manufacturers and electric vehicle manufacturers to aid the design and automation of battery disassembly lines.
ToF-SIMS sputter depth profiling of interphases and coatings on lithium metal surfaces
Lithium metal as a negative electrode material offers ten times the specific capacity of graphitic electrodes, but its rechargeable operation poses challenges like excessive and continuous interphase formation, high surface area lithium deposits and safety issues. Improving the lithium | electrolyte interface and interphase requires powerful surface analysis techniques, such as ToF-SIMS sputter depth profiling.This study investigates lithium metal sections with an SEI layer by ToF-SIMS using different sputter ions. An optimal sputter ion is chosen based on the measured ToF-SIMS sputter depth profiles and SEM analysis of the surface damage. Further, this method is adapted to lithium metal foil with an intermetallic coating. ToF-SIMS sputter depth profiles in both polarities provide comprehensive insights into the coating structure. Both investigations highlight the value of ToF-SIMS sputter depth profiling in lithium metal battery research and offer guidance for future studies.
Enantioselective C–H annulations enabled by either nickel- or cobalt-electrocatalysed C–H activation for catalyst-controlled chemodivergence
Enantioselective electrocatalysis shows unique potential for the sustainable assembly of enantiomerically enriched molecules. This approach allows electro-oxidative C–H activation to be performed paired to the hydrogen evolution reaction. Recent progress has featured scarce transition metals with limited availability. Here we reveal that the earth-abundant 3d transition metals nickel and cobalt exhibit distinctive performance for enantioselective electrocatalysis with chemodivergent reactivity patterns. Enantioselective desymmetrizations of strained bicyclic alkenes were achieved through C–H annulations. A data-driven optimization of chiral N,O-bidentate salicyloxazoline-type ligands was crucial for enhancing enantioselectivity in nickel electrocatalysis. Notably, in the transition state of the enantio-determining step, secondary weak attractive π–π and CH–π interactions were identified, reflecting the informed adaptations in the ligand design. Detailed mechanistic investigations by experimental and computational studies revealed for the nickel electrocatalysis a C–N bond-forming reductive elimination from nickel(III) and for the cobalt electrocatalysis a C–C bond-forming nucleophilic addition from cobalt(III) as the product-determining steps.
A combination of measures limits demand for critical materials in Sweden’s electric car transition
Electrification of passenger cars will result in an increased demand for critical raw materials. Here we estimate the quantities of nickel, manganese, cobalt, lithium, and graphite that could be required for a transition to electric cars in Sweden and how different measures can limit material demand. We find notable reduction potentials for shorter battery range—enabled by improved charging infrastructure, increased vehicle energy efficiency, and reduced travel demand compared to a reference scenario. The reduction potentials for downsizing and more lightweight cars, and car sharing are more modest. The combined impact of these measures would be 50–75% reduction in cumulative demand and 72–87% reduction in in-use stock in 2050, depending on the material and battery chemistry pathway. Generally, the reduction potentials are larger than the potential contributions from recycling, suggesting that these complementary measures may be more effective in reducing material demand.
Improving the fast-charging capability of NbWO-based Li-ion batteries
The discovery of Nb-W-O materials years ago marks the milestone of charging a lithium-ion battery in minutes. Nevertheless, for many applications, charging lithium-ion battery within one minute is urgently demanded, the bottleneck of which largely lies in the lack of fundamental understanding of Li+ storage mechanisms in these materials. Herein, by visualizing Li+ intercalated into representative Nb16W5O55, we find that the fast-charging nature of such material originates from an interesting rate-dependent lattice relaxation process associated with the Jahn-Teller effect. Furthermore, in situ electron microscopy further reveals a directional, [010]-preferred Li+ transport mechanism in Nb16W5O55 crystals being the “bottleneck” toward fast charging that deprives the entry of any desolvated Li+ through the prevailing non-(010) surfaces. Hence, we propose a machine learning-assisted interface engineering strategy to swiftly collect desolvated Li+ and relocate them to (010) surfaces for their fast intercalation. As a result, a capacity of ≈ 116 mAh g−1 (68.5% of the theoretical capacity) at 80 C (45 s) is achieved when coupled with a Li negative electrode.
Responses