Related Articles

Integrating the multiple perspectives of people and nature in place-based marine spatial planning

Marine spatial planning (MSP) has emerged as a tool to enable marine ecosystem-based management that seeks to balance human demands for ocean space with environmental protection. However, there is a history of thinking about our ocean systems as spaces, not places. As a result, most MSPs have been implemented without consideration of place. The relationship between people and the rest of nature is at the core of the UN SDGs (Sustainable Development Goals). Due to significant knowledge gaps in sociocultural connections, people and their place-based perspectives and needs are often overlooked in the MSP process. New approaches are required to equip societies with information to inform sustainable ocean planning relevant to environmental change and the local sociocultural context. We encourage the inclusion of a distinct place-based characteristic in MSP and argue that bringing in the concepts of space and place from the discipline of geography can enable a broader view of the seascape in MSP. Here, we provide five core considerations of place-based MSP that include: (1) sense of place; (2) social-ecological systems; (3) ocean and human health; (4) multiple ways of knowing; and (5) social knowledge. We review available methods and suggest a multi-evidence-based approach that can highlight dynamic eco-cultural connections between people and the biophysical patterns and processes of interlinked landscapes and seascapes. Moving towards place-based MSP can help to solve three important issues in the current context of global socio-environmental transformations. First, these key concepts are relevant for interdisciplinary science, as solving problems raised by MSP requires more than superimposing spatial layers of scientific knowledge. Second, marine planning and management is less efficient if policies are not integrated and if issues are addressed by each individual sector rather than in a holistic manner. Third, a place-based approach accounts for individual and collective values and may open new ways to solve governance issues. A shift from understanding and managing ocean spaces to including ocean places can support progress towards sustainable and equitable MSP goals.

Exploring corporate social responsibility practices in the telecommunications, broadcasting and courier sectors: a comparative industry analysis

This study aims to dissect and understand the Corporate Social Responsibility (CSR) endeavours of organisations within Malaysia’s telecommunications, broadcasting, postal and courier services sectors, particularly those holding licenses from the Malaysian Communications and Multimedia Commission (MCMC). These sectors were chosen for this study due to their crucial role in Malaysia’s economy and society, their notable environmental influence, the regulatory and public attention they receive as well as the distinct challenges and opportunities they face in implementing CSR. Employing a qualitative methodology, the study utilises a semi-structured interview protocol to gather rich, detailed insights from top management across eight listed and non-listed companies. This approach ensures a comprehensive exploration of CSR types, practices and their implementation within the target sectors. Purposive sampling was adopted to select informants with specific expertise, ensuring that the data collected was relevant and insightful. The findings of this study underscore that while telecommunications firms actively participate in Corporate Social Responsibility (CSR) initiatives, their efforts predominantly benefit the broader society, with less emphasis placed on shareholders. Additionally, it was observed that environmental issues receive relatively minimal attention from these organisations. This diversity highlights the necessity for a more equitable CSR approach that caters equally to the needs of all stakeholders, including the environment. Such a strategy is crucial for cultivating a sustainable and ethically sound business environment. The implications of this research are manifold. For companies, it emphasises the critical nature of adopting an all-encompassing CSR strategy that fosters competitive advantage while promoting sustainable development. The study advocates for a paradigm shift towards CSR practices that are not only philanthropic but also prioritise environmental stewardship and value creation.

The spatial coupling and its influencing mechanism between rural human-habitat heritage and key rural tourism villages in China

Exploring the influencing factors and its influencing mechanism of the spatial coupling between rural human-habitat heritage (RHH) and key rural tourism villages (RTV) at county scale from the perspective of space can expand the theoretical research on the spatial coupling mechanism between RHH and RTV, and further provide theoretical reference and data support for the coordinated development and high-quality development of RHH and RTV in China. At the same time, previous studies have failed to systematically analyze the influencing factors and influencing mechanisms of the spatial coupling between RHH and RTV at the county scale, which restricted decision makers from formulating coordinated development measures between RHH and RTV at the macro level. In this study, bivariate spatial autocorrelation model and spatial coupling coordination model were used to quantitatively analyze the spatial coupling level between RHH and RTV at the county scale in China. Then, the linear regression (OLS) model, geographically weighted regression (GWR) model, and optimal parameter GeoDetector (OPGD) model were integrated to systematically analyze the linear influencing, spatial heterogeneity effect and interactive effect of natural environment and socioeconomic factors on the spatial coupling level between RHH and RTV in China, and explore the interactive influencing mechanism. The results show that the spatial coupling level of RHH and RTV in China show a significant east-west differentiation. There were 2024, 473, 293, 55 and 6 areas of severe, moderate, mild, basic and moderate coordination between RHH and RTV, respectively. Among them, severe and moderate discoordination areas are mainly distributed in Northeast China, arid and semi-arid areas in Western China, plateau areas in Southwest China, densely populated urban agglomerations and plains agricultural areas in the Middle East China. Mild discoordination areas and basic and moderate coordination areas are mainly located in transition zones in mountainous and plain areas, economically developed mountainous and hilly counties along the southeastern coast, and coastal tourist cities. Economic and population factors are the fundamental factors that affect the spatial coupling between RHH and RTV. Rural tourism facilities and rural public service facilities are important external driving forces for the coupling development of RHH and RTV, and Sociocultural environment factors are the important internal driving forces. Different surface forms, different climate conditions and different ecological environment conditions can form different natural textures and spatial organizations. Suitable climate conditions, sufficient water sources and ecological environment conditions can form more suitable rural settlement construction conditions and production and living conditions, and ultimately affect the protection and activation of rural human settlement heritage and the development and layout of key tourist villages. The spatial coupling relationship between RHH and RTV is the result of the complex interaction between the natural directivity law caused by natural environmental factors and the humanistic directivity law caused by human social and economic activities.

Probabilistic machine learning for battery health diagnostics and prognostics—review and perspectives

Diagnosing lithium-ion battery health and predicting future degradation is essential for driving design improvements in the laboratory and ensuring safe and reliable operation over a product’s expected lifetime. However, accurate battery health diagnostics and prognostics is challenging due to the unavoidable influence of cell-to-cell manufacturing variability and time-varying operating circumstances experienced in the field. Machine learning approaches informed by simulation, experiment, and field data show enormous promise to predict the evolution of battery health with use; however, until recently, the research community has focused on deterministic modeling methods, largely ignoring the cell-to-cell performance and aging variability inherent to all batteries. To truly make informed decisions regarding battery design in the lab or control strategies for the field, it is critical to characterize the uncertainty in a model’s predictions. After providing an overview of lithium-ion battery degradation, this paper reviews the current state-of-the-art probabilistic machine learning models for health diagnostics and prognostics. Details of the various methods, their advantages, and limitations are discussed in detail with a primary focus on probabilistic machine learning and uncertainty quantification. Last, future trends and opportunities for research and development are discussed.

Responses

Your email address will not be published. Required fields are marked *