Related Articles
Role of pancreatic lipase inhibition in obesity treatment: mechanisms and challenges towards current insights and future directions
The worldwide health emergency of obesity is closely connected to how dietary fats are metabolized, whereas the process is significantly influenced by pancreatic lipase (PL), an enzyme critical for lipid hydrolysis into fatty acids. This narrative review employs a methodological approach utilizing literature searches of PubMed data up to March 2024. The search term criteria encompasses keywords related to the role, mechanism, challenges, and current and future treatments of pancreatic lipase in obesity with an overall references is 106. This paper offers a comprehensive explanation of the role of PL, underlining its significance in the digestive process and lipid imbalances that contribute to obesity and by extension, its impact on obesity development and progression. Additionally, it delves into the dual functionality of the pancreas, emphasizing its impact on metabolism and energy utilization which, when dysregulated, promotes obesity. A focal point of this review is the investigation into the efficacy, challenges, and adverse effects of current pancreatic lipase inhibitors, with orlistat being highlighted as a primary current drug delivery. By discussing advanced obesity treatments, including the exploration of novel anti-obesity medications that target specific biological pathways, this review underscores the complexity of obesity treatment and the necessity for a multifaceted approach. In conclusion, this paper emphasizing the importance of understanding the role of enzymes like pancreatic lipase mechanistic and adopting a multidisciplinary approach to treatment and side effects of current obesity drugs and explore new emerging therapeutic strategies for more effective obesity management.
Consensus on the key characteristics of metabolism disruptors
Metabolism-disrupting agents (MDAs) are chemical, infectious or physical agents that increase the risk of metabolic disorders. Examples include pharmaceuticals, such as antidepressants, and environmental agents, such as bisphenol A. Various types of studies can provide evidence to identify MDAs, yet a systematic method is needed to integrate these data to help to identify such hazards. Inspired by work to improve hazard identification of carcinogens using key characteristics (KCs), we developed 12 KCs of MDAs based on our knowledge of processes underlying metabolic diseases and the effects of their causal agents: (1) alters function of the endocrine pancreas; (2) impairs function of adipose tissue; (3) alters nervous system control of metabolic function; (4) promotes insulin resistance; (5) disrupts metabolic signalling pathways; (6) alters development and fate of metabolic cell types; (7) alters energy homeostasis; (8) causes inappropriate nutrient handling and partitioning; (9) promotes chronic inflammation and immune dysregulation in metabolic tissues; (10) disrupts gastrointestinal tract function; (11) induces cellular stress pathways; and (12) disrupts circadian rhythms. In this Consensus Statement, we present the logic that revealed the KCs of MDAs and highlight evidence that supports the identification of KCs. We use chemical, infectious and physical agents as examples to illustrate how the KCs can be used to organize and use mechanistic data to help to identify MDAs.
Direct specification of lymphatic endothelium from mesenchymal progenitors
During embryogenesis, endothelial cells (ECs) are generally described to arise from a common pool of progenitors termed angioblasts, which diversify through iterative steps of differentiation to form functionally distinct subtypes of ECs. A key example is the formation of lymphatic ECs (LECs), which are thought to arise largely through transdifferentiation from venous endothelium. Opposing this model, here we show that the initial expansion of mammalian LECs is primarily driven by the in situ differentiation of mesenchymal progenitors and does not require transition through an intermediate venous state. Single-cell genomics and lineage-tracing experiments revealed a population of paraxial mesoderm-derived Etv2+Prox1+ progenitors that directly give rise to LECs. Morphometric analyses of early LEC proliferation and migration, and mutants that disrupt lymphatic development supported these findings. Collectively, this work establishes a cellular blueprint for LEC specification and indicates that discrete pools of mesenchymal progenitors can give rise to specialized subtypes of ECs.
Cellular and molecular mechanisms underlying obesity in degenerative spine and joint diseases
Degenerative spine and joint diseases, including intervertebral disc degeneration (IDD), ossification of the spinal ligaments (OSL), and osteoarthritis (OA), are common musculoskeletal diseases that cause pain or disability to the patients. However, the pathogenesis of these musculoskeletal disorders is complex and has not been elucidated clearly to date. As a matter of fact, the spine and joints are not independent of other organs and tissues. Recently, accumulating evidence demonstrates the association between obesity and degenerative musculoskeletal diseases. Obesity is a common metabolic disease characterized by excessive adipose tissue or abnormal adipose distribution in the body. Excessive mechanical stress is regarded as a critical risk factor for obesity-related pathology. Additionally, obesity-related factors, mainly including lipid metabolism disorder, dysregulated pro-inflammatory adipokines and cytokines, are reported as plausible links between obesity and various human diseases. Importantly, these obesity-related factors are deeply involved in the regulation of cell phenotypes and cell fates, extracellular matrix (ECM) metabolism, and inflammation in the pathophysiological processes of degenerative spine and joint diseases. In this study, we systematically discuss the potential cellular and molecular mechanisms underlying obesity in these degenerative musculoskeletal diseases, and hope to provide novel insights for developing targeted therapeutic strategies.
Pediatric obesity and the risk of multiple sclerosis: a nationwide prospective cohort study
Emerging evidence implies a link between high pediatric body mass index (BMI) and an increased risk of multiple sclerosis (MS). However, previous research suggests this association is only present for adolescent obesity and not childhood obesity. The present study aimed to assess the association between pediatric obesity and risk of developing MS, and to investigate if degree of obesity and age at obesity treatment initiation affects the risk. In a subgroup, response to obesity treatment on MS risk was assessed.
Responses