Related Articles

Neural codes track prior events in a narrative and predict subsequent memory for details

Throughout our lives, we learn schemas that specify what types of events to expect in particular contexts and the temporal order in which these events usually occur. Here, our first goal was to investigate how such context-dependent temporal structures are represented in the brain during processing of temporally extended events. To accomplish this, we ran a 2-day fMRI study (N = 40) in which we exposed participants to many unique animated videos of weddings composed of sequences of rituals; each sequence originated from one of two fictional cultures (North and South), where rituals were shared across cultures, but the transition structure between these rituals differed across cultures. The results, obtained using representational similarity analysis, revealed that context-dependent temporal structure is represented in multiple ways in parallel, including distinct neural representations for the culture, for particular sequences, and for past and current events within the sequence. Our second goal was to test the hypothesis that neural schema representations scaffold memory for specific details. In keeping with this hypothesis, we found that the strength of the neural representation of the North/South schema for a particular wedding predicted subsequent episodic memory for the details of that wedding.

Dopaminergic modulation and dosage effects on brain state dynamics and working memory component processes in Parkinson’s disease

Parkinson’s disease (PD) is primarily diagnosed through its characteristic motor deficits, yet it also encompasses progressive cognitive impairments that profoundly affect quality of life. While dopaminergic medications are routinely prescribed to manage motor symptoms in PD, their influence extends to cognitive functions as well. Here we investigate how dopaminergic medication influences aberrant brain circuit dynamics associated with encoding, maintenance and retrieval working memory (WM) task-phases processes. PD participants, both on and off dopaminergic medication, and healthy controls, performed a Sternberg WM task during fMRI scanning. We employ a Bayesian state-space computational model to delineate brain state dynamics related to different task phases. Importantly, a within-subject design allows us to examine individual differences in the effects of dopaminergic medication on brain circuit dynamics and task performance. We find that dopaminergic medication alters connectivity within prefrontal-basal ganglia-thalamic circuits, with changes correlating with enhanced task performance. Dopaminergic medication also restores engagement of task-phase-specific brain states, enhancing task performance. Critically, we identify an “inverted-U-shaped” relationship between medication dosage, brain state dynamics, and task performance. Our study provides valuable insights into the dynamic neural mechanisms underlying individual differences in dopamine treatment response in PD, paving the way for more personalized therapeutic strategies.

Self-reports map the landscape of task states derived from brain imaging

Psychological states influence our happiness and productivity; however, estimates of their impact have historically been assumed to be limited by the accuracy with which introspection can quantify them. Over the last two decades, studies have shown that introspective descriptions of psychological states correlate with objective indicators of cognition, including task performance and metrics of brain function, using techniques like functional magnetic resonance imaging (fMRI). Such evidence suggests it may be possible to quantify the mapping between self-reports of experience and objective representations of those states (e.g., those inferred from measures of brain activity). Here, we used machine learning to show that self-reported descriptions of experiences across tasks can reliably map the objective landscape of task states derived from brain activity. In our study, 194 participants provided descriptions of their psychological states while performing tasks for which the contribution of different brain systems was available from prior fMRI studies. We used machine learning to combine these reports with descriptions of brain function to form a ‘state-space’ that reliably predicted patterns of brain activity based solely on unseen descriptions of experience (N = 101). Our study demonstrates that introspective reports can share information with the objective task landscape inferred from brain activity.

Baicalein inhibits cell proliferation and induces apoptosis in brain glioma cells by downregulating the LGR4-EGFR pathway

Patients diagnosed with brain glioma have a poor prognosis and limited therapeutic options. LGR4 is overexpressed in brain glioma and involved in the tumorigenesis of many tumors. Baicalein (BAI) is a kind of flavonoid that has exhibited anti-tumor effects in various tumors. Nevertheless, the functions and associations of BAI and LGR4 in brain glioma remain unclear. In this study, Gene Expression Profiling Interactive Analysis and Human Protein Atlas databases were used to perform expression and survival analysis of LGR4 in brain glioma patients. Subsequently, the significance of LGR4-EGFR in brain glioma cells (HS683 and KNS89) and brain glioma animal models was explored by RNA interference and subcutaneous transplantation. Additionally, brain glioma cells were treated with BAI to explore the roles and mechanisms of BAI in brain glioma. The results showed that LGR4 was highly expressed in brain glioma and was related to a poor prognosis. LGR4 knockdown repressed the proliferation and EGFR phosphorylation but induced apoptosis in brain glioma cells. However, these effects were reversed by EGFR overexpression and CBL knockdown. In contrast, both in vitro and in vivo experiments revealed that LGR4 overexpression facilitated brain glioma cell malignant behavior and promoted tumor development, but these effects were rescued by BAI and an EGFR inhibitor. Furthermore, si-LGR4 accelerated EGFR protein degradation, while oe-LGR4 exhibited the opposite effect. Without affecting normal cellular viability, BAI inhibited malignant behavior, interacted with LGR4, and blocked the LGR4-EGFR pathway for brain glioma cells. In conclusion, our data suggested that BAI inhibited brain glioma cell proliferation and induced apoptosis by downregulating the LGR4-EGFR pathway, which provides a novel strategy and potential therapeutic targets to treat brain glioma.

Constructing future behavior in the hippocampal formation through composition and replay

The hippocampus is critical for memory, imagination and constructive reasoning. Recent models have suggested that its neuronal responses can be well explained by state spaces that model the transitions between experiences. Here we use simulations and hippocampal recordings to reconcile these views. We show that if state spaces are constructed compositionally from existing building blocks, or primitives, hippocampal responses can be interpreted as compositional memories, binding these primitives together. Critically, this enables agents to behave optimally in new environments with no new learning, inferring behavior directly from the composition. We predict a role for hippocampal replay in building and consolidating these compositional memories. We test these predictions in two datasets by showing that replay events from newly discovered landmarks induce and strengthen new remote firing fields. When the landmark is moved, replay builds a new firing field at the same vector to the new location. Together, these findings provide a framework for reasoning about compositional memories and demonstrate that such memories are formed in hippocampal replay.

Responses

Your email address will not be published. Required fields are marked *