Related Articles

Solar-driven interfacial evaporation technologies for food, energy and water

Solar-driven interfacial evaporation technologies use solar energy to heat materials that drive water evaporation. These technologies are versatile and do not require electricity, which enables their potential application across the food, energy and water nexus. In this Review, we assess the potential of solar-driven interfacial evaporation technologies in food, energy and clean-water production, in wastewater treatment, and in resource recovery. Interfacial evaporation technologies can produce up to 5.3 l m–2 h−1 of drinking water using sunlight as the energy source. Systems designed for food production in coastal regions desalinate water to irrigate crops or wash contaminated soils. Technologies are being developed to simultaneously produce both clean energy and water through interfacial evaporation and have reached up to 204 W m–2 for electricity and 2.5 l m–2 h–1 for water in separate systems. Other solar evaporation approaches or combinations of approaches could potentially use the full solar spectrum to generate multiple products (such as water, food, electricity, heating or cooling, and/or fuels). In the future, solar evaporation technologies could aid in food, energy and water provision in low-resource or rural settings that lack reliable access to these essentials, but the systems must first undergo rigorous, scaled-up field testing to understand their performance, stability and competitiveness.

Bank lending and environmental quality in Gulf Cooperation Council countries

To achieve economies with net-zero carbon emissions, it is essential to develop a robust green financial intermediary channel. This study seeks empirical evidence on how domestic bank lending to sovereign and private sectors in Gulf Cooperation Council (GCC) countries impacts carbon dioxide and greenhouse gas emissions. We employ PMG-ARDL model to panel data comprising six countries in GCC over twenty years for carbon dioxide emissions and nineteen years for greenhouse gas emissions. Our findings reveal a long-term positive impact of both bank lending variables on carbon dioxide and greenhouse gas emissions. In addition, lending to the government shows a negative short-term effect on greenhouse gas emissions. The cross-country results demonstrate the presence of a long-run effect of explanatory variables on both types of emissions, except for greenhouse gas in Saudi Arabia. The sort-term impact of the explanatory variables on carbon dioxide and greenhouse gas emissions is quite diverse. Not only do these effects differ across countries, but some variables have opposing effects on the two types of emissions within a single country. The findings of this study present a new perspective for GCC economies: neglecting total greenhouse gas emissions and concentrating solely on carbon dioxide emissions means missing critical information for devising effective strategies to combat threats of environmental degradation and achieve net-zero goals.

Elucidating reactive sugar-intermediates by mass spectrometry

The stereoselective introduction of glycosidic bonds is one of the greatest challenges in carbohydrate chemistry. A key aspect of controlling glycan synthesis is the glycosylation reaction in which the glycosidic linkages are formed. The outcome is governed by a reactive sugar intermediate – the glycosyl cation. Glycosyl cations are highly unstable and short-lived, making them difficult to study using established analytical tools. However, mass-spectrometry-based techniques are perfectly suited to unravel the structure of glycosyl cations in the gas phase. The main approach involves isolating the reactive intermediate, free from external influences such as solvents and promoters. Isolation of the cations allows examining their structure by integrating orthogonal spectrometric and spectroscopic technologies. In this perspective, recent achievements in gas-phase research on glycosyl cations are highlighted. It provides an overview of the spectroscopic techniques used to probe the glycosyl cations and methods for interpreting their spectra. The connections between gas-phase data and mechanisms in solution synthesis are explored, given that glycosylation reactions are typically performed in solution.

Revealing the molecular interplay of coverage, wettability, and capacitive response at the Pt(111)-water solution interface under bias

While electrified interfaces are crucial for electrocatalysis and corrosion, their molecular morphology remains largely unknown. Through highly realistic ab initio molecular dynamics simulations of the Pt(111)-water solution interface in reducing conditions, we reveal a deep interconnection among electrode coverage, wettability, capacitive response, and catalytic activity. We identify computationally the experimentally hypothesised states for adsorbed hydrogen on Pt, HUPD and HOPD, revealing their role in governing interfacial water reorientation and hydrogen evolution. The transition between these two H states with increasing potential, induces a shift from a hydrophobic to a hydrophilic interface and correlates with a change in the primary electrode screening mechanism. This results in a slope change in differential capacitance, marking the onset of the experimentally observed peak around the potential of zero charge. Our work produces crucial insights for advancing electrocatalytic energy conversion, developing deep understanding of electrified interfaces.

Direct observation of Mn-ion dissolution from LiMn2O4 lithium battery cathode to electrolyte

The degradation of lithium-ion batteries has become a concerning issue. One problem is metal ion dissolution from the cathode material, such as Mn2+ dissolution from spinel-type LiMn2O4 (LMO). However, direct observation of the dissolution process has yet to be reported. Here, we establish in-situ 1H nuclear magnetic resonance imaging (MRI) measurement as an efficient technique to observe Mn2+ dissolution from a model lithium battery with LMO as the cathode. We observe an increase in the MRI signal intensity near the cathode, confirming the dissolution of Mn2+ from the cathode to the electrolyte. Moreover, we show that Mn2+ dissolution from LMO can be suppressed using an appropriate choice of electrolytes. We believe the method developed here can answer the long-time unanswered question of when, where, and how the metal ion dissolution occurs in the lithium-ion battery electrode and can be extended to other electrochemical systems.

Responses

Your email address will not be published. Required fields are marked *