Related Articles

Weak ties and the value of social connections for autistic people as revealed during the COVID-19 pandemic

A diverse portfolio of social relationships matters for people’s wellbeing, including both strong, secure relationships with others (‘close ties’) and casual interactions with acquaintances and strangers (‘weak ties’). Almost all of autism research has focused on Autistic people’s close ties with friends, family and intimate partners, resulting in a radically constrained understanding of Autistic sociality. Here, we sought to understand the potential power of weak-tie interactions by drawing on 95 semi-structured interviews with Autistic young people and adults conducted during the COVID-19 pandemic. We analysed the qualitative data using reflexive thematic analysis within an essentialist framework. During the COVID-19 lockdowns, Autistic people deeply missed not only their close personal relationships but also their “incidental social contact” with acquaintances and strangers. These weak-tie interactions appear to serve similar functions for Autistic people as they do for non-autistic people, including promoting wellbeing. These findings have important implications both for future research into Autistic sociality and for the design of practical services and supports to enhance Autistic people’s opportunities to flourish.

Evolution and impact of the science of science: from theoretical analysis to digital-AI driven research

The Science of Science (SoS) examines the mechanisms driving the development and societal role of science, evolving from its sociological roots into a data-driven discipline. This paper traces the progression of SoS from its early focus on the social functions of science to the current era, characterized by large-scale quantitative analysis and AI-driven methodologies. Scientometrics, a key branch of SoS, has utilized statistical methods and citation analysis to understand scientific growth and knowledge diffusion. With the rise of big data and complex network theory, SoS has transitioned toward more refined analyses, leveraging artificial intelligence (AI) for predictive modeling, sentiment annotation, and entity extraction. This paper explores the application of AI in SoS, highlighting its role as a surrogate, quant, and arbiter in advancing data processing, data analysis and peer review. The integration of AI has ushered in a new paradigm for SoS, enhancing its predictive accuracy and providing deeper insights into the internal dynamics of science and its impact on society.

Iron homeostasis and ferroptosis in muscle diseases and disorders: mechanisms and therapeutic prospects

The muscular system plays a critical role in the human body by governing skeletal movement, cardiovascular function, and the activities of digestive organs. Additionally, muscle tissues serve an endocrine function by secreting myogenic cytokines, thereby regulating metabolism throughout the entire body. Maintaining muscle function requires iron homeostasis. Recent studies suggest that disruptions in iron metabolism and ferroptosis, a form of iron-dependent cell death, are essential contributors to the progression of a wide range of muscle diseases and disorders, including sarcopenia, cardiomyopathy, and amyotrophic lateral sclerosis. Thus, a comprehensive overview of the mechanisms regulating iron metabolism and ferroptosis in these conditions is crucial for identifying potential therapeutic targets and developing new strategies for disease treatment and/or prevention. This review aims to summarize recent advances in understanding the molecular mechanisms underlying ferroptosis in the context of muscle injury, as well as associated muscle diseases and disorders. Moreover, we discuss potential targets within the ferroptosis pathway and possible strategies for managing muscle disorders. Finally, we shed new light on current limitations and future prospects for therapeutic interventions targeting ferroptosis.

Type 2 immunity in allergic diseases

Significant advancements have been made in understanding the cellular and molecular mechanisms of type 2 immunity in allergic diseases such as asthma, allergic rhinitis, chronic rhinosinusitis, eosinophilic esophagitis (EoE), food and drug allergies, and atopic dermatitis (AD). Type 2 immunity has evolved to protect against parasitic diseases and toxins, plays a role in the expulsion of parasites and larvae from inner tissues to the lumen and outside the body, maintains microbe-rich skin and mucosal epithelial barriers and counterbalances the type 1 immune response and its destructive effects. During the development of a type 2 immune response, an innate immune response initiates starting from epithelial cells and innate lymphoid cells (ILCs), including dendritic cells and macrophages, and translates to adaptive T and B-cell immunity, particularly IgE antibody production. Eosinophils, mast cells and basophils have effects on effector functions. Cytokines from ILC2s and CD4+ helper type 2 (Th2) cells, CD8 + T cells, and NK-T cells, along with myeloid cells, including IL-4, IL-5, IL-9, and IL-13, initiate and sustain allergic inflammation via T cell cells, eosinophils, and ILC2s; promote IgE class switching; and open the epithelial barrier. Epithelial cell activation, alarmin release and barrier dysfunction are key in the development of not only allergic diseases but also many other systemic diseases. Recent biologics targeting the pathways and effector functions of IL4/IL13, IL-5, and IgE have shown promising results for almost all ages, although some patients with severe allergic diseases do not respond to these therapies, highlighting the unmet need for a more detailed and personalized approach.

Engineering bone/cartilage organoids: strategy, progress, and application

The concept and development of bone/cartilage organoids are rapidly gaining momentum, providing opportunities for both fundamental and translational research in bone biology. Bone/cartilage organoids, essentially miniature bone/cartilage tissues grown in vitro, enable the study of complex cellular interactions, biological processes, and disease pathology in a representative and controlled environment. This review provides a comprehensive and up-to-date overview of the field, focusing on the strategies for bone/cartilage organoid construction strategies, progresses in the research, and potential applications. We delve into the significance of selecting appropriate cells, matrix gels, cytokines/inducers, and construction techniques. Moreover, we explore the role of bone/cartilage organoids in advancing our understanding of bone/cartilage reconstruction, disease modeling, drug screening, disease prevention, and treatment strategies. While acknowledging the potential of these organoids, we discuss the inherent challenges and limitations in the field and propose potential solutions, including the use of bioprinting for organoid induction, AI for improved screening processes, and the exploration of assembloids for more complex, multicellular bone/cartilage organoids models. We believe that with continuous refinement and standardization, bone/cartilage organoids can profoundly impact patient-specific therapeutic interventions and lead the way in regenerative medicine.

Responses

Your email address will not be published. Required fields are marked *