Related Articles

Iron homeostasis and ferroptosis in muscle diseases and disorders: mechanisms and therapeutic prospects

The muscular system plays a critical role in the human body by governing skeletal movement, cardiovascular function, and the activities of digestive organs. Additionally, muscle tissues serve an endocrine function by secreting myogenic cytokines, thereby regulating metabolism throughout the entire body. Maintaining muscle function requires iron homeostasis. Recent studies suggest that disruptions in iron metabolism and ferroptosis, a form of iron-dependent cell death, are essential contributors to the progression of a wide range of muscle diseases and disorders, including sarcopenia, cardiomyopathy, and amyotrophic lateral sclerosis. Thus, a comprehensive overview of the mechanisms regulating iron metabolism and ferroptosis in these conditions is crucial for identifying potential therapeutic targets and developing new strategies for disease treatment and/or prevention. This review aims to summarize recent advances in understanding the molecular mechanisms underlying ferroptosis in the context of muscle injury, as well as associated muscle diseases and disorders. Moreover, we discuss potential targets within the ferroptosis pathway and possible strategies for managing muscle disorders. Finally, we shed new light on current limitations and future prospects for therapeutic interventions targeting ferroptosis.

Four cardiomyopathy patients with a heterozygous DSG2 p.Arg119Ter variant

DSG2, encoding desmoglein-2, is one of the causative genes of arrhythmogenic cardiomyopathy. We previously identified a homozygous DSG2 p.Arg119Ter stop-gain variant in a patient with juvenile-onset cardiomyopathy and advanced biventricular heart failure. However, the pathological significance and prevalence of the heterozygous DSG2 p.Arg119Ter variant remains uncertain. Here, we identified four unrelated patients with cardiomyopathy with heterozygous DSG2 p.Arg119Ter variants among 808 patients with nonischemic cardiomyopathy; the allele frequency was 0.0037, which is more than 50-fold greater than that reported in the general Japanese population. These patients were clinically diagnosed with arrhythmogenic right ventricular cardiomyopathy (Pt-1), dilated cardiomyopathy (DCM) after ventricular septum defect closure surgery (Pt-2), DCM (Pt-3), and end-stage hypertrophic cardiomyopathy (Pt-4). The patients also exhibited reduced left ventricular contractile function and varying clinical courses. Genetic analysis identified additional possible causative variants, DSG2 p.Arg292Cys in Pt-1 and BAG3 p.His166SerfsTer6 in Pt-3. Immunohistochemical analysis of endomyocardial biopsy samples revealed that the expression of not only desmoglein-2 but also desmoplakin was markedly reduced. Transmission electron microscopy revealed pale and fragmented desmosomes and widened gaps between intercalated discs in the myocardium. A microforce test using human cardiomyocytes differentiated from induced pluripotent stem cells (iPSC-CMs) demonstrated reduced contractility in iPSC-CMs carrying a heterozygous truncating variant in DSG2. These data suggest that the DSG2 p.Arg119Ter variant is concealed in patients with cardiomyopathy with heart failure, and desmosome impairment may be a latent exacerbating factor of contractile dysfunction and disease progression.

The Marchantia polymorpha pangenome reveals ancient mechanisms of plant adaptation to the environment

Plant adaptation to terrestrial life started 450 million years ago and has played a major role in the evolution of life on Earth. The genetic mechanisms allowing this adaptation to a diversity of terrestrial constraints have been mostly studied by focusing on flowering plants. Here, we gathered a collection of 133 accessions of the model bryophyte Marchantia polymorpha and studied its intraspecific diversity using selection signature analyses, a genome–environment association study and a pangenome. We identified adaptive features, such as peroxidases or nucleotide-binding and leucine-rich repeats (NLRs), also observed in flowering plants, likely inherited from the first land plants. The M. polymorpha pangenome also harbors lineage-specific accessory genes absent from seed plants. We conclude that different land plant lineages still share many elements from the genetic toolkit evolved by their most recent common ancestor to adapt to the terrestrial habitat, refined by lineage-specific polymorphisms and gene family evolution.

Large-scale genome-wide association analyses identify novel genetic loci and mechanisms in hypertrophic cardiomyopathy

Hypertrophic cardiomyopathy (HCM) is an important cause of morbidity and mortality with both monogenic and polygenic components. Here, we report results from a large genome-wide association study and multitrait analysis including 5,900 HCM cases, 68,359 controls and 36,083 UK Biobank participants with cardiac magnetic resonance imaging. We identified 70 loci (50 novel) associated with HCM and 62 loci (20 novel) associated with relevant left ventricular traits. Among the prioritized genes in the HCM loci, we identify a novel HCM disease gene, SVIL, which encodes the actin-binding protein supervillin, showing that rare truncating SVIL variants confer a roughly tenfold increased risk of HCM. Mendelian randomization analyses support a causal role of increased left ventricular contractility in both obstructive and nonobstructive forms of HCM, suggesting common disease mechanisms and anticipating shared response to therapy. Taken together, these findings increase our understanding of the genetic basis of HCM, with potential implications for disease management.

FGFR antagonists restore defective mandibular bone repair in a mouse model of osteochondrodysplasia

Gain-of-function mutations in fibroblast growth factor receptor (FGFR) genes lead to chondrodysplasia and craniosynostoses. FGFR signaling has a key role in the formation and repair of the craniofacial skeleton. Here, we analyzed the impact of Fgfr2– and Fgfr3-activating mutations on mandibular bone formation and endochondral bone repair after non-stabilized mandibular fractures in mouse models of Crouzon syndrome (Crz) and hypochondroplasia (Hch). Bone mineralization of the calluses was abnormally high in Crz mice and abnormally low in Hch mice. The latter model presented pseudarthrosis and impaired chondrocyte differentiation. Spatial transcriptomic analyses of the Hch callus revealed abnormally low expression of Col11, Col1a, Dmp1 genes in mature chondrocytes. We found that the expression of genes involved in autophagy and apoptosis (Smad1, Comp, Birc2) was significantly perturbed and that the Dusp3, Dusp9, and Socs3 genes controlling the mitogen-activated protein kinase pathway were overexpressed. Lastly, we found that treatment with a tyrosine kinase inhibitor (BGJ398, infigratinib) or a C-type natriuretic peptide (BMN111, vosoritide) fully rescued the defective endochondral bone repair observed in Hch mice. Taken as a whole, our findings show that FGFR3 is a critical orchestrator of bone repair and provide a rationale for the development of potential treatments for patients with FGFR3-osteochondrodysplasia.

Responses

Your email address will not be published. Required fields are marked *