Related Articles
Pathogenesis of aquatic bird bornavirus 1 in turkeys of different age
Aquatic bird bornavirus 1 (ABBV1), an orthobornavirus in the family Bornaviridae, displays a broad host range among avian species, including poultry. The pathogenesis of orthobornaviruses, at least in mammals and psittacines, appears to be mediated by the host immune response against the infected nervous tissue, with younger animals showing a milder disease due to immune tolerance. Here, we tested the ability of ABBV1 to infect domestic turkeys (Meleagris gallopavo), with a focus on evaluating the impact of age at infection. Cohorts of 6-week-old (old) and day-old (young) male turkeys were divided into virus-inoculated and control groups, and kept for up to 12 weeks. Results showed that turkeys of both ages were susceptible to ABBV1 infection by intramuscular administration, following a centripetal and limited centrifugal spread, although infection appeared delayed in old compared to young birds. Notably, only young turkeys developed clinical signs and more frequent inflammation of the central nervous system, indicating that infection at a very early age is unlikely to induce tolerance to ABBV1 infection.
Brainstem serotonin amplifies nociceptive transmission in a mouse model of Parkinson’s disease
Parkinson’s disease arises from the degeneration of dopaminergic neurons in the substantia nigra pars compacta, leading to motor symptoms such as akinesia, rigidity, and tremor at rest. The non-motor component of Parkinson’s disease includes increased neuropathic pain, the prevalence of which is 4 to 5 times higher than the general rate. By studying a mouse model of Parkinson’s disease induced by 6-hydroxydopamine, we assessed the impact of dopamine depletion on pain modulation. Mice exhibited mechanical hypersensitivity associated with hyperexcitability of neurons in the dorsal horn of the spinal cord (DHSC). Serotonin (5-HT) levels increased in the spinal cord, correlating with reduced tyrosine hydroxylase (TH) immunoreactivity in the nucleus raphe magnus (NRM) and increased excitability of 5-HT neurons. Selective optogenetic inhibition of 5-HT neurons attenuated mechanical hypersensitivity and reduced DHSC hyperexcitability. In addition, the blockade of 5-HT2A and 5-HT3 receptors reduced mechanical hypersensitivity. These results reveal, for the first time, that PD-like dopamine depletion triggers spinal-mediated mechanical hypersensitivity, associated with serotonergic hyperactivity in the NRM, opening up new therapeutic avenues for Parkinson’s disease-associated pain targeting the serotonergic systems.
Is neck pain a marker for something serious? Like myelopathy
Degenerative Cervical Myelopathy (DCM) is a chronic progressive condition of the cervical spine that leads to compression of the spinal cord. It is the most common cause of spinal cord dysfunction in adults, and it occurs due to age-related changes or genetically associated pathologies. DCM is a clinical and radiological diagnosis and presents with a spectrum of symptoms ranging from neck pain and stiffness to paralysis. While neck pain is prevalent amongst patients attending specialist clinics, its predictive value for DCM is limited. This paper focuses on elucidating the relationship between DCM and chronic neck pain, and we discuss the underlying aetiology and broader neurological implications in the context of the literature. The progression of DCM can be slow and insidious with symptoms worsening gradually over time. Neck pain should not be discounted in the evaluation of DCM.
The clinical evolution of patients with idiopathic spinal cord herniation: a case series
Retrospective case series of 48 patients.
Ethical considerations in AI for child health and recommendations for child-centered medical AI
There does not exist any previous comprehensive review on AI ethics in child health or any guidelines for management, unlike in adult medicine. This review describes ethical principles in AI for child health and provides recommendations for child-centered medical AI. We also introduce the Pediatrics EthicAl Recommendations List for AI (PEARL-AI) framework for clinicians and AI developers to ensure ethical AI enabled systems in healthcare for children.
Responses