Related Articles

Successes and failures of conservation actions to halt global river biodiversity loss

To address the losses of river biodiversity worldwide, various conservation actions have been implemented to promote recovery of species and ecosystems. In this Review, we assess the effectiveness of these actions globally and regionally, and identify causes of success and failure. Overall, actions elicit little improvement in river biodiversity, in contrast with reports from terrestrial and marine ecosystems. This lack of improvement does not necessarily indicate a failure of any individual action. Rather, it can be attributed in part to remaining unaddressed stressors driving biodiversity loss; a poor match between the spatial scale of action and the scale of the affected area; and absence of adequate monitoring, including insufficient timescales, missing reference and control sites or insufficient selection of targeted taxa. Furthermore, outcomes are often not reported and are unevenly distributed among actions, regions and organism groups. Expanding from local-scale actions to coordinated, transformative, catchment-scale management approaches shows promise for improving outcomes. Such approaches involve identifying major stressors, appropriate conservation actions and source populations for recolonization, as well as comprehensive monitoring, relevant legislation and engaging all stakeholders to promote the recovery of river biodiversity.

A case for assemblage-level conservation to address the biodiversity crisis

Traditional conservation efforts have centred on safeguarding individual species, but these strategies have limitations in a world where entire ecosystems are rapidly changing. Ecosystem conservation can maintain critical ecological functions, but often lacks the detail necessary for the effective conservation of threatened or endangered species. The conservation of such species is mandated by policies and remains a dominant focus of natural resource management. In this Perspective, we propose that assemblage-level conservation targeting groups of taxonomically related or functionally similar species can bridge the gap between species and ecosystems and help to address global biodiversity loss. This approach has previously been limited by data and methodological constraints, but the ongoing growth of biodiversity data, advances in ecological modelling and breakthroughs in computational power have now made effective assemblage-level conservation feasible. Community models provide insights at both the species level and the assemblage level while appropriately accounting for species variability in detection during sampling and uncertainty in biological inferences. Assemblage-level conservation can link both species-specific needs and broader ecological dynamics, ultimately enabling effective strategies for conserving threatened species, ecological communities and ecosystem functions.

Pathogens and planetary change

Emerging infectious diseases, biodiversity loss, and anthropogenic environmental change are interconnected crises with massive social and ecological costs. In this Review, we discuss how pathogens and parasites are responding to global change, and the implications for pandemic prevention and biodiversity conservation. Ecological and evolutionary principles help to explain why both pandemics and wildlife die-offs are becoming more common; why land-use change and biodiversity loss are often followed by an increase in zoonotic and vector-borne diseases; and why some species, such as bats, host so many emerging pathogens. To prevent the next pandemic, scientists should focus on monitoring and limiting the spread of a handful of high-risk viruses, especially at key interfaces such as farms and live-animal markets. But to address the much broader set of infectious disease risks associated with the Anthropocene, decision-makers will need to develop comprehensive strategies that include pathogen surveillance across species and ecosystems; conservation-based interventions to reduce human–animal contact and protect wildlife health; health system strengthening; and global improvements in epidemic preparedness and response. Scientists can contribute to these efforts by filling global gaps in disease data, and by expanding the evidence base for disease–driver relationships and ecological interventions.

Intercity personnel exchange is more effective than policy transplantation at reducing water pollution

Severe spatial disparities exist in water pollution and water governance. A popular solution is that lagging cities transplant policies from cities with successful experiences. However, environmental governance is more than policies. Merely copying policies from elsewhere may not generate intended effects. Here this research argues that intercity personnel exchange can be a more effective policy instrument than policy transplantation. We provide the first nationwide estimates in China of the effect of intercity exchange of city leaders on water pollution reduction. Using large-scale micro-level datasets on city leaders’ curriculum vitae, firm behaviors, patents and policy texts, we show that intercity exchange of city leaders leads to a 4.78–15.26% reduction in firm-level water pollution, which contributes to 39.45–57.98% of the national total water pollution reduction from 2006 to 2013. Exchanged city leaders facilitate the diffusion of governance experience across cities and the formulation of intercity cooperation. They are also more likely to initiate new policies to support industrial upgrading. Our findings highlight the importance and potential of intercity personnel exchange as a policy instrument for water governance in particular and green transition in general.

Coastal wetland resilience through local, regional and global conservation

Coastal wetlands, including tidal marshes, mangrove forests and tidal flats, support the livelihoods of millions of people. Understanding the resilience of coastal wetlands to the increasing number and intensity of anthropogenic threats (such as habitat conversion, pollution, fishing and climate change) can inform what conservation actions will be effective. In this Review, we synthesize anthropogenic threats to coastal wetlands and their resilience through the lens of scale. Over decades and centuries, anthropogenic threats have unfolded across local, regional and global scales, reducing both the extent and quality of coastal wetlands. The resilience of existing coastal wetlands is driven by their quality, which is modulated by both physical conditions (such as sediment supply) and ecological conditions (such as species interactions operating from local through to global scales). Protection and restoration efforts, however, are often localized and focus on the extent of coastal wetlands. The future of coastal wetlands will depend on an improved understanding of their resilience, and on society’s actions to enhance both their extent and quality across different scales.

Responses

Your email address will not be published. Required fields are marked *