Related Articles

Immunotherapy targeting a leader sequence cathepsin G-derived peptide

Myeloid azurophil granules provide a rich source of intracellular leukemia antigens. Cathepsin G (CG) is a serine protease that has higher expression in acute myeloid leukemia (AML) blasts in comparison to normal myeloid progenitors. Based on the unique biology of HLA-A*0201 (HLA-A2), in which presentation of leader sequence (LS)-derived peptides is favored, we focused on the LS-CG-derived peptide CG1 (FLLPTGAEA). We previously detected CG1/HLA-A2 complexes on the surface of primary HLA-A2+ AML blasts and cell lines, and immunity targeting CG1/HLA-A2 in leukemia patients. T cell receptor (TCR)-mimic (m) antibodies are immunotherapeutic antibodies that target peptide-HLA (pHLA) complexes. Here we report on the engineering, preclinical efficacy, and safety evaluation of a novel CG1/HLA-A2-targeting, T cell-engager, bispecific antibody (CG1/A2xCD3). CG1/A2xCD3 showed high binding affinity to CG1/HLA-A2 monomers, CD3-Fc fusion protein, and to AML and T cells, with potent killing of HLA-A2+ primary AML and cell lines in vitro and in vivo. This correlated with both tumor- and CG1/A2xCD3-dependent T cell activation and cytokine secretion. Lastly, CG1/A2xCD3 had no activity against normal bone marrow. Together, these results support the targeting of LS-derived peptides and the continued clinical development of CG1/A2xCD3 in the setting of AML.

Targeting of TAMs: can we be more clever than cancer cells?

With increasing incidence and geography, cancer is one of the leading causes of death, reduced quality of life and disability worldwide. Principal progress in the development of new anticancer therapies, in improving the efficiency of immunotherapeutic tools, and in the personification of conventional therapies needs to consider cancer-specific and patient-specific programming of innate immunity. Intratumoral TAMs and their precursors, resident macrophages and monocytes, are principal regulators of tumor progression and therapy resistance. Our review summarizes the accumulated evidence for the subpopulations of TAMs and their increasing number of biomarkers, indicating their predictive value for the clinical parameters of carcinogenesis and therapy resistance, with a focus on solid cancers of non-infectious etiology. We present the state-of-the-art knowledge about the tumor-supporting functions of TAMs at all stages of tumor progression and highlight biomarkers, recently identified by single-cell and spatial analytical methods, that discriminate between tumor-promoting and tumor-inhibiting TAMs, where both subtypes express a combination of prototype M1 and M2 genes. Our review focuses on novel mechanisms involved in the crosstalk among epigenetic, signaling, transcriptional and metabolic pathways in TAMs. Particular attention has been given to the recently identified link between cancer cell metabolism and the epigenetic programming of TAMs by histone lactylation, which can be responsible for the unlimited protumoral programming of TAMs. Finally, we explain how TAMs interfere with currently used anticancer therapeutics and summarize the most advanced data from clinical trials, which we divide into four categories: inhibition of TAM survival and differentiation, inhibition of monocyte/TAM recruitment into tumors, functional reprogramming of TAMs, and genetic enhancement of macrophages.

Targeting LMO2-induced autocrine FLT3 signaling to overcome chemoresistance in early T-cell precursor acute lymphoblastic leukemia

Early T-cell Precursor Acute Lymphoblastic Leukemia (ETP-ALL) is an immature subtype of T-cell acute lymphoblastic leukemia (T-ALL) commonly show deregulation of the LMO2-LYL1 stem cell transcription factors, activating mutations of cytokine receptor signaling, and poor early response to intensive chemotherapy. Previously, studies of the Lmo2 transgenic mouse model of ETP-ALL identified a population of stem-like T-cell progenitors with long-term self-renewal capacity and intrinsic chemotherapy resistance linked to cellular quiescence. Here, analyses of Lmo2 transgenic mice, patient-derived xenografts, and single-cell RNA-sequencing data from primary ETP-ALL identified a rare subpopulation of leukemic stem cells expressing high levels of the cytokine receptor FLT3. Despite a highly proliferative state, these FLT3-overexpressing cells had long-term self-renewal capacity and almost complete resistance to chemotherapy. Chromatin immunoprecipitation and assay for transposase-accessible chromatin sequencing demonstrated FLT3 and its ligand may be direct targets of the LMO2 stem-cell complex. Media conditioned by Lmo2 transgenic thymocytes revealed an autocrine FLT3-dependent signaling loop that could be targeted by the FLT3 inhibitor gilteritinib. Consequently, gilteritinib impaired in vivo growth of ETP-ALL and improved the sensitivity to chemotherapy. Furthermore, gilteritinib enhanced response to the BCL2 inhibitor venetoclax, which may enable “chemo-free” treatment of ETP-ALL. Together, these data provide a cellular and molecular explanation for enhanced cytokine signaling in LMO2-driven ETP-ALL beyond activating mutations and a rationale for clinical trials of FLT3 inhibitors in ETP-ALL.

International myeloma working group immunotherapy committee recommendation on sequencing immunotherapy for treatment of multiple myeloma

T-cell redirecting therapy (TCRT), specifically chimeric antigen receptor T-cell therapy (CAR T-cells) and bispecific T-cell engagers (TCEs) represent a remarkable advance in the treatment of multiple myeloma (MM). There are several products available around the world and several more in development targeting primarily B-cell maturation antigen (BCMA) and G protein–coupled receptor class C group 5 member D (GRPC5D). The relatively rapid availability of multiple immunotherapies brings the necessity to understand how a certain agent may affect the safety and efficacy of a subsequent immunotherapy so MM physicians and patients can aim at optimal sequential use of these therapies. The International Myeloma Working Group conveyed panel of experts to review patient and disease-related factors affecting efficacy and safety of immunotherapy, summarize existing information on sequencing therapy and provide a series of core recommendations.

Responses

Your email address will not be published. Required fields are marked *