Related Articles
Using twin-pairs to assess potential bias in polygenic prediction of externalising behaviours across development
Prediction from polygenic scores may be confounded by sources of passive gene-environment correlation (rGE; e.g. population stratification, assortative mating, and environmentally mediated effects of parental genotype on child phenotype). Using genomic data from 10 000 twin pairs, we asked whether polygenic scores from the most recent externalising genome-wide association study predict conduct problems, ADHD symptomology and callous-unemotional traits, and whether these predictions are biased by rGE. We ran regression models including within-family and between-family polygenic scores, to separate the direct genetic influence on a trait from environmental influences that correlate with genes (indirect genetic effects). Findings suggested that this externalising polygenic score is a good index of direct genetic influence on conduct and ADHD-related symptoms across development, with minimal bias from rGE, although the polygenic score predicted less variance in CU traits. Post-hoc analyses showed some indirect genetic effects acting on a common factor indexing stability of conduct problems across time and contexts.
A molecular mechanism mediating clozapine-enhanced sensorimotor gating
The atypical antipsychotic clozapine targets multiple receptor systems beyond the dopaminergic pathway and influences prepulse inhibition (PPI), a critical translational measure of sensorimotor gating. Since PPI is modulated by atypical antipsychotics such as risperidone and clozapine, we hypothesized that p11—an adaptor protein associated with anxiety- and depressive-like behaviors and G-protein-coupled receptor function—might modulate these effects. In this study, we assessed the role of p11 in clozapine’s PPI-enhancing effect by testing wild-type and global p11 knockout (KO) mice in response to haloperidol, risperidone, and clozapine. We also performed structural and functional brain imaging. Contrary to our expectation that anxiety-like p11-KO mice would exhibit an augmented startle response and heightened sensitivity to clozapine, PPI tests showed that p11-KO mice were unresponsive to the PPI-enhancing effects of risperidone and clozapine. Imaging revealed distinct regional brain volume differences and reduced hippocampal connectivity in p11-KO mice, with significantly blunted clozapine-induced connectivity changes in the CA1 region. Our findings highlight a novel role for p11 in modulating clozapine’s effects on sensorimotor gating and hippocampal connectivity, offering new insight into its functional pathways.
Genome-wide analysis identifies novel shared loci between depression and white matter microstructure
Depression, a complex and heritable psychiatric disorder, is associated with alterations in white matter microstructure, yet their shared genetic basis remains largely unclear. Utilizing the largest available genome-wide association study (GWAS) datasets for depression (N = 674,452) and white matter microstructure (N = 33,224), assessed through diffusion tensor imaging metrics such as fractional anisotropy (FA) and mean diffusivity (MD), we employed linkage disequilibrium score regression method to estimate global genetic correlations, local analysis of [co]variant association approach to pinpoint genomic regions with local genetic correlations, and conjunctional false discovery rate analysis to identify shared variants. Our findings revealed that depression showed significant local genetic correlations with FA in 37 genomic regions and with MD in 59 regions, while global genetic correlations were weak. Variant-level analysis identified 78 distinct loci jointly associated with depression (25 novel loci) and FA (35 novel loci), and 41 distinct loci associated with depression (17 novel loci) and MD (25 novel loci). Further analyses showed that these shared loci exhibited both concordant and discordant effect directions between depression and white matter traits, as well as distinct yet overlapping hemispheric patterns in their genetic architecture. Enrichment analysis of these shared loci implicated biological processes related to metabolism and regulation. This study provides evidence of a mixed-direction shared genetic architecture between depression and white matter microstructure. The identification of specific loci and pathways offers potential insights for developing targeted interventions to improve white matter integrity and alleviate depressive symptoms.
Genome-wide association study meta-analysis provides insights into the etiology of heart failure and its subtypes
Heart failure (HF) is a major contributor to global morbidity and mortality. While distinct clinical subtypes, defined by etiology and left ventricular ejection fraction, are well recognized, their genetic determinants remain inadequately understood. In this study, we report a genome-wide association study of HF and its subtypes in a sample of 1.9 million individuals. A total of 153,174 individuals had HF, of whom 44,012 had a nonischemic etiology (ni-HF). A subset of patients with ni-HF were stratified based on left ventricular systolic function, where data were available, identifying 5,406 individuals with reduced ejection fraction and 3,841 with preserved ejection fraction. We identify 66 genetic loci associated with HF and its subtypes, 37 of which have not previously been reported. Using functionally informed gene prioritization methods, we predict effector genes for each identified locus, and map these to etiologic disease clusters through phenome-wide association analysis, network analysis and colocalization. Through heritability enrichment analysis, we highlight the role of extracardiac tissues in disease etiology. We then examine the differential associations of upstream risk factors with HF subtypes using Mendelian randomization. These findings extend our understanding of the mechanisms underlying HF etiology and may inform future approaches to prevention and treatment.
Iron homeostasis and ferroptosis in muscle diseases and disorders: mechanisms and therapeutic prospects
The muscular system plays a critical role in the human body by governing skeletal movement, cardiovascular function, and the activities of digestive organs. Additionally, muscle tissues serve an endocrine function by secreting myogenic cytokines, thereby regulating metabolism throughout the entire body. Maintaining muscle function requires iron homeostasis. Recent studies suggest that disruptions in iron metabolism and ferroptosis, a form of iron-dependent cell death, are essential contributors to the progression of a wide range of muscle diseases and disorders, including sarcopenia, cardiomyopathy, and amyotrophic lateral sclerosis. Thus, a comprehensive overview of the mechanisms regulating iron metabolism and ferroptosis in these conditions is crucial for identifying potential therapeutic targets and developing new strategies for disease treatment and/or prevention. This review aims to summarize recent advances in understanding the molecular mechanisms underlying ferroptosis in the context of muscle injury, as well as associated muscle diseases and disorders. Moreover, we discuss potential targets within the ferroptosis pathway and possible strategies for managing muscle disorders. Finally, we shed new light on current limitations and future prospects for therapeutic interventions targeting ferroptosis.
Responses