Related Articles

Operationalizing climate risk in a global warming hotspot

Climate change is a looming threat to marine life, creating an urgent need to develop climate-informed conservation strategies. The Climate Risk Index for Biodiversity was designed to assess the climate risk for marine species in a manner that supports decision-making. Yet, its regional application remains to be explored. Here, we use it to evaluate climate risk for ~2000 species in the northwest Atlantic Ocean, a marine warming hotspot, to explore its capacity to inform climate-considered fisheries management. Under high emissions, harvested species, especially those with the highest economic value, have a disproportionate risk of projected exposure to hazardous climate conditions but benefit the most from emission mitigation. By mapping critical risk areas for 90 fish stocks, we pinpoint locations likely to require additional intervention, such as in the southern Gulf of St. Lawrence for Atlantic cod. Finally, we demonstrate how evaluating climate risk geographically and understanding how it arises can support short- and long-term fisheries management and conservation objectives under climate change.

Adaptation portfolio – a multi-measure framework for future floods and droughts

Adaptation is critically important for coping with climate change. However, quantitative studies on which adaptation measures should be taken to maintain the present water risk level in the context of climate change have been explored little, particularly at large basin scales. Here, we devised three adaptation portfolios composed of combinations of measures to alleviate floods and drought with explicit basin-wide modelling in the Chao Phraya River basin, Thailand. Two portfolios mitigated future water scarcity to the present level but failed to eliminate extreme floods. The remaining portfolio with basin-wide reforestation substantially reduced the number of future flooding days but enhanced the number of drought months to 3–6 months a year, resulting from increased evapotranspiration by 7–11%. Overall, future flood adaptation remains challenging even in highly regulated rivers. We also observed that adaptation effects differ substantially by sub-basins. It highlights the necessity of spatio-temporal detailed impact modelling, including multiple adaptation measures.

Delivering sustainable climate action: reframing the sustainable development goals

Globally, climate change represents the most significant threat to the environment and socio-economic development, endangering lives and livelihoods. Within the UN’s current 17 Sustainable Development Goals (SDGs), climate action is explicitly covered under Goal 13, “to take urgent action to combat climate change and its impacts”. This perspective considers how to re-frame the SDGs and their successor towards mainstreaming climate action within the targets and indicators of all the development goals.

Compound coastal flooding in San Francisco Bay under climate change

The risk of compound coastal flooding in the San Francisco Bay Area is increasing due to climate change yet remains relatively underexplored. Using a novel hybrid statistical-dynamical downscaling approach, this study investigates the impacts of climate change induced sea-level rise and higher river discharge on the magnitude and frequency of flooding events as well as the relative importance of various forcing drivers to compound flooding within the Bay. Results reveal that rare occurrences of flooding under the present-day climate are projected to occur once every few hundred years under climate change with relatively low sea-level rise (0.5 m) but would become annual events under climate change with high sea-level rise (1.0 to 1.5 m). Results also show that extreme water levels that are presently dominated by tides will be dominated by sea-level rise in most locations of the Bay in the future. The dominance of river discharge to the non-tidal and non-sea-level rise driven water level signal in the North Bay is expected to extend ~15 km further seaward under extreme climate change. These findings are critical for informing climate adaptation and coastal resilience planning in San Francisco Bay.

Responses

Your email address will not be published. Required fields are marked *