Related Articles
Circular RNAs in neurological conditions – computational identification, functional validation, and potential clinical applications
Non-coding RNAs (ncRNAs) have gained significant attention in recent years due to advancements in biotechnology, particularly high-throughput total RNA sequencing. These developments have led to new understandings of non-coding biology, revealing that approximately 80% of non-coding regions in the genome possesses biochemical functionality. Among ncRNAs, circular RNAs (circRNAs), first identified in 1976, have emerged as a prominent research field. CircRNAs are abundant in most human cell types, evolutionary conserved, highly stable, and formed by back-splicing events which generate covalently closed ends. Notably, circRNAs exhibit high expression levels in neural tissue and perform diverse biochemical functions, including acting as molecular sponges for microRNAs, interacting with RNA-binding proteins to regulate their availability and activity, modulating transcription and splicing, and even translating into functional peptides in some cases. Recent advancements in computational and experimental methods have enhanced our ability to identify and validate circRNAs, providing valuable insights into their biological roles. This review focuses on recent developments in circRNA research as they related to neuropsychiatric and neurodegenerative conditions. We also explore their potential applications in clinical diagnostics, therapeutics, and future research directions. CircRNAs remain a relatively underexplored area of non-coding biology, particularly in the context of neurological disorders. However, emerging evidence supports their role as critical players in the etiology and molecular mechanisms of conditions such as schizophrenia, bipolar disorder, major depressive disorder, Alzheimer’s disease, and Parkinson’s disease. These findings suggest that circRNAs may provide a novel framework contributing to the molecular dysfunctions underpinning these complex neurological conditions.
Predictive learning as the basis of the testing effect
A prominent learning phenomenon is the testing effect, meaning that testing enhances retention more than studying. Emergent frameworks propose fundamental (Hebbian and predictive) learning principles as its basis. Predictive learning posits that learning occurs based on the contrast (error) between a prediction and the feedback on that prediction (prediction error). Here, we propose that in testing (but not studying) scenarios, participants predict potential answers, and its contrast with the subsequent feedback yields a prediction error, which facilitates testing-based learning. To investigate this, we developed an associative memory network incorporating Hebbian and/or predictive learning, together with an experimental design where human participants studied or tested English-Swahili word pairs followed by recognition. Three behavioral experiments (N = 80, 81, 62) showed robust testing effects when feedback was provided. Model fitting (of 10 different models) suggested that only models incorporating predictive learning can account for the breadth of data associated with the testing effect. Our data and model suggest that predictive learning underlies the testing effect.
Understanding learning through uncertainty and bias
Learning allows humans and other animals to make predictions about the environment that facilitate adaptive behavior. Casting learning as predictive inference can shed light on normative cognitive mechanisms that improve predictions under uncertainty. Drawing on normative learning models, we illustrate how learning should be adjusted to different sources of uncertainty, including perceptual uncertainty, risk, and uncertainty due to environmental changes. Such models explain many hallmarks of human learning in terms of specific statistical considerations that come into play when updating predictions under uncertainty. However, humans also display systematic learning biases that deviate from normative models, as studied in computational psychiatry. Some biases can be explained as normative inference conditioned on inaccurate prior assumptions about the environment, while others reflect approximations to Bayesian inference aimed at reducing cognitive demands. These biases offer insights into cognitive mechanisms underlying learning and how they might go awry in psychiatric illness.
Two types of motifs enhance human recall and generalization of long sequences
Whether it is listening to a piece of music, learning a new language, or solving a mathematical equation, people often acquire abstract notions in the sense of motifs and variables—manifested in musical themes, grammatical categories, or mathematical symbols. How do we create abstract representations of sequences? Are these abstract representations useful for memory recall? In addition to learning transition probabilities, chunking, and tracking ordinal positions, we propose that humans also use abstractions to arrive at efficient representations of sequences. We propose and study two abstraction categories: projectional motifs and variable motifs. Projectional motifs find a common theme underlying distinct sequence instances. Variable motifs contain symbols representing sequence entities that can change. In two sequence recall experiments, we train participants to remember sequences with projectional and variable motifs, respectively, and examine whether motif training benefits the recall of novel sequences sharing the same motif. Our result suggests that training projectional and variables motifs improve transfer recall accuracy, relative to control groups. We show that a model that chunks sequences in an abstract motif space may learn and transfer more efficiently, compared to models that learn chunks or associations on a superficial level. Our study suggests that humans construct efficient sequential memory representations according to the two types of abstraction we propose, and creating these abstractions benefits learning and out-of-distribution generalization. Our study paves the way for a deeper understanding of human abstraction learning and generalization.
Advancements in 2D layered material memristors: unleashing their potential beyond memory
The scalability of two-dimensional (2D) materials down to a single monolayer offers exciting prospects for high-speed, energy-efficient, scalable memristors. This review highlights the development of 2D material-based memristors and potential applications beyond memory, including neuromorphic, in-memory, in-sensor, and complex computing. This review also encompasses potential challenges and future opportunities for advancing these materials and technologies, underscoring the transformative impact of 2D memristors on versatile and sustainable electronic devices and systems.
Responses