Related Articles
The evolution of lithium-ion battery recycling
Demand for lithium-ion batteries (LIBs) is increasing owing to the expanding use of electrical vehicles and stationary energy storage. Efficient and closed-loop battery recycling strategies are therefore needed, which will require recovering materials from spent LIBs and reintegrating them into new batteries. In this Review, we outline the current state of LIB recycling, evaluating industrial and developing technologies. Among industrial technologies, pyrometallurgy can be broadly applied to diverse electrode materials but requires operating temperatures of over 1,000 °C and therefore has high energy consumption. Hydrometallurgy can be performed at temperatures below 200 °C and has material recovery rates of up to 93% for lithium, nickel and cobalt, but it produces large amounts of wastewater. Developing technologies such as direct recycling and upcycling aim to increase the efficiency of LIB recycling and rely on improved pretreatment processes with automated disassembly and cleaner mechanical separation. Additionally, the range of materials recovered from spent LIBs is expanding from the cathode materials recycled with established methods to include anode materials, electrolytes, binders, separators and current collectors. Achieving an efficient recycling ecosystem will require collaboration between recyclers, battery manufacturers and electric vehicle manufacturers to aid the design and automation of battery disassembly lines.
Categorizing robots by performance fitness into the tree of robots
Robots are typically classified based on specific morphological features, like their kinematic structure. However, a complex interplay between morphology and intelligence shapes how well a robot performs processes. Just as delicate surgical procedures demand high dexterity and tactile precision, manual warehouse or construction work requires strength and endurance. These process requirements necessitate robot systems that provide a level of performance fitting the process. In this work, we introduce the tree of robots as a taxonomy to bridge the gap between morphological classification and process-based performance. It classifies robots based on their fitness to perform, for example, physical interaction processes. Using 11 industrial manipulators, we constructed the first part of the tree of robots based on a carefully deduced set of metrics reflecting fundamental robot capabilities for various industrial physical interaction processes. Through significance analysis, we identified substantial differences between the systems, grouping them via an expectation-maximization algorithm to create a fitness-based robot classification that is open for contributions and accessible.
An Integrative lifecycle design approach based on carbon intensity for renewable-battery-consumer energy systems
Driven by sustainable development goals and carbon neutrality worldwide, demands for both renewable energy and storage systems are constantly increasing. However, the lack of an appropriate approach without considering renewable intermittence and demand stochasticity will lead to capacity oversizing or undersizing. In this study, an optimal design approach is proposed for integrated photovoltaic-battery-consumer energy systems in the form of a m2-kWp-kWh relationship in both centralized and distributed formats. Superiorities of the proposed matching degree approach are compared with the traditional uniformity approach, in photovoltaic capacity, battery capacity, net present value and lifecycle carbon intensity. Results showed that the proposed method is superior to the traditional approach with higher net present value and lower carbon intensity. Furthermore, the proposed method can be scaled and applied to guide the design of photovoltaic-battery-consumer energy systems in different climate zones, promoting sustainable development and carbon neutrality globally.
Cognitive reserve is associated with education, social determinants, and cognitive outcomes among older American Indians in the Strong Heart Study
Cognitive reserve, a component of resilience, may be conceptualized as the ability to overcome accumulating neuropathology and maintain healthy aging and function. However, research measuring and evaluating it in American Indians is needed. We recruited American Indians from 3 regional centers for longitudinal examinations (2010-13, n = 818; 2017-19, n = 403) including MRI, cognitive, clinical, and questionnaire data. We defined cognitive reserve by measuring the residual from individual regressions of cognitive tests over imaged brain volumes, adjusted for age and sex. Analyses examined three different metrics of cognitive reserve against sociodemographic, clinical, and longitudinal cognitive data in causal mediation models. Better cognitive reserve was significantly associated with more education, higher income, lower prevalence of depression, lower prevalence of diabetes, and lower prevalence of kidney disease, but we found no statistically significant evidence for an association with plasma biomarkers for Alzheimer’s disease and related dementias, APOE e4 carrier status, alcohol use, body mass, or hypertension. Better cognitive reserve was associated with better cognitive function over mean 6.7 years follow-up (range 4-9 years); and the association for education with cognition over time was mediated in part (15-24%) by cognitive reserve. Cognitive reserve, although challenging to measure, appears important for understanding the range of cognitive aging in American Indians.
Feasibility of meeting future battery demand via domestic cell production in Europe
Batteries are critical to mitigate global warming, with battery electric vehicles as the backbone of low-carbon transport and the main driver of advances and demand for battery technology. However, the future demand and production of batteries remain uncertain, while the ambition to strengthen national capabilities and self-sufficiency is gaining momentum. In this study, leveraging probabilistic modelling, we assessed Europe’s capability to meet its future demand for high-energy batteries via domestic cell production. We found that demand in Europe is likely to exceed 1.0 TWh yr−1 by 2030 and thereby outpace domestic production, with production required to grow at highly ambitious growth rates of 31–68% yr−1. European production is very likely to cover at least 50–60% of the domestic demand by 2030, while 90% self-sufficiency seems feasible but far from certain. Thus, domestic production shortfalls are more likely than not. To support Europe’s battery prospects, stakeholders must accelerate the materialization of production capacities and reckon with demand growth post-2030, with reliable industrial policies supporting Europe’s competitiveness.
Responses