Related Articles
Urine electrooxidation for energy–saving hydrogen generation
Urea electrooxidation offers a cost-effective alternative to water oxidation for energy-saving hydrogen production. However, its practical application is limited by expensive urea reactants and sluggish reaction kinetics. Here, we present an efficient urine electrolysis system for hydrogen production, using cost-free urine as feedstock. Our system leverages a discovered Cl-mediated urea oxidation mechanism on Pt catalysts, where adsorbed Cl directly couple with urea to form N-chlorourea intermediates, which are then converted into N2 via intermolecular N–N coupling. This rapid mediated-oxidation process notably improves the activity and stability of urine electrolysis while avoiding Cl-induced corrosion, enabling over 200 hours of operation at reduced voltages. Accordingly, a notable reduction in the electricity consumption is achieved during urine electrolysis (4.05 kWh Nm−3) at 300 mA cm−2 in practical electrolyser for hydrogen production, outperforming the traditional urea (5.62 kWh Nm−3) and water (4.70–5.00 kWh Nm−3) electrolysis.
Effect of hydrogen leakage on the life cycle climate impacts of hydrogen supply chains
Hydrogen is of interest for decarbonizing hard-to-abate sectors because it does not produce carbon dioxide when combusted. However, hydrogen has indirect warming effects. Here we conducted a life cycle assessment of electrolysis and steam methane reforming to assess their emissions while considering hydrogen’s indirect warming effects. We find that the primary factors influencing life cycle climate impacts are the production method and related feedstock emissions rather than the hydrogen leakage and indirect warming potential. A comparison between fossil fuel-based and hydrogen-based steel production and heavy-duty transportation showed a reduction in emissions of 800 to more than 1400 kg carbon dioxide equivalent per tonne of steel and 0.1 to 0.17 kg carbon dioxide equivalent per tonne-km of cargo. While any hydrogen production pathway reduces greenhouse gas emissions for steel, this is not the case for heavy-duty transportation. Therefore, we recommend a sector-specific approach in prioritizing application areas for hydrogen.
Relationship between degradation mechanism and water electrolysis efficiency of electrodeposited nickel electrodes
This work investigates the degradation or corrosion of bulk and mesoporous (MP) electrodeposited nickel electrodes in alkaline water electrolysis in the absence and presence of magnetic field. Based on the electrochemical and analytical tests and morphological evaluation, both bulk and MP electrodes show improved properties of alkaline water electrolysis in the presence of magnetic field due to the impaired formation of gas bubbles and more stable hydroxide layer formed on nickel. However, mesoporous Ni electrodes exhibited significantly less damage due to the presence of higher active sites and inherent porosity which reduce either number of size of bubbles, thereby mitigating stress and minimizing harm to the hydroxide layer. Although scaling up magnetic water electrolysis for industrial electrolyzers demands great economical and technical challenges, our approach using mesoporous nickel electrodes offers promise by reducing degradation and partially offsetting costs through improved efficiency.
High-performance achromatic flat lens by multiplexing meta-atoms on a stepwise phase dispersion compensation layer
Flat optics have attracted interest for decades due to their flexibility in manipulating optical wave properties, which allows the miniaturization of bulky optical assemblies into integrated planar components. Recent advances in achromatic flat lenses have shown promising applications in various fields. However, it is a significant challenge for achromatic flat lenses with a high numerical aperture to simultaneously achieve broad bandwidth and expand the aperture sizes. Here, we present the zone division multiplex of the meta-atoms on a stepwise phase dispersion compensation (SPDC) layer to address the above challenge. In principle, the aperture size can be freely enlarged by increasing the optical thickness difference between the central and marginal zones of the SPDC layer, without the limit of the achromatic bandwidth. The SPDC layer also serves as the substrate, making the device thinner. Two achromatic flat lenses of 500 nm thickness with a bandwidth of 650–1000 nm are experimentally achieved: one with a numerical aperture of 0.9 and a radius of 20.1 µm, and another with a numerical aperture of 0.7 and a radius of 30.0 µm. To the best of our knowledge, they are the broadband achromatic flat lenses with highest numerical apertures, the largest aperture sizes and thinnest thickness reported so far. Microscopic imaging with a 1.10 µm resolution has also been demonstrated by white light illumination, surpassing any previously reported resolution attained by achromatic metalenses and multi-level diffractive lenses. These unprecedented performances mark a substantial step toward practical applications of flat lenses.
Extreme shape coexistence observed in 70Co
The shape of the atomic nucleus is a property that underpins our understanding of nuclear systems, impacts the limits of nuclear existence, and enables probes of physics beyond the Standard Model. Nuclei can adopt a variety of shapes, including spheres, axially deformed spheroids, and pear shapes. In some regions of the nuclear chart where a spherical nucleus would naively be expected, deformed nuclear states can result from the collective action of constituent protons and neutrons. In a small subset of nuclei both spherical and deformed nuclear states have been experimentally observed, a phenomenon termed shape coexistence. We present spectroscopic evidence for the coexistence of Jπ = 1+ spherical and deformed states in 70Co, separated by less than 275 keV. This close degeneracy of levels with the same Jπ and different shapes demonstrates an extreme example of shape coexistence resulting from the interplay of independent particle motion and collective behavior in highly unstable nuclear systems and identifies the Co isotopes as a transition point between deformed ground states observed in the Cr isotopes and spherical configurations observed in the closed-shell Ni isotopes.
Responses