Related Articles
Energy efficiency and carbon savings via a body grid
The climate crisis necessitates decarbonization solutions that transform energy systems across all scales. While attention today focuses on utility-scale power systems, mini-or metro-scale grids, and at end-use device efficiency, the individual user scale remains underexplored. Just as with energy efficiency innovations tailored to micro-environments, body-scale energy savings offer new opportunities alongside technological and behavioral challenges. Here we propose a technique and a suite of potential innovations focused on the “body grid” in which devices, circuits, information network, human body and the environment interact within a universal framework to achieve energy savings, new functionality, and improved comfort. We present and test a prototype body grid supporting inter-device synergy and cooperation with external energy systems indoors and outdoors. This system yields substantial energy and economic savings, enhances personal control and comfort, and enables potential energy market participation. Simulation results demonstrate global energy savings of up to 50% for space cooling and heating.
Grid-enhancing technologies for clean energy systems
Renewable energy source integration into energy systems can contribute to transmission congestion, which requires time-consuming and capital-intensive upgrades to address. Grid-enhancing technologies (GETs) can increase the capacity of grids with minimal investment, preventing congestion and curtailment of renewable energy. In this Review, we discuss the principles and uses of GETs, which use software and/or hardware to interpret real-time conditions to better use the existing capacity of grid assets. GETs include dynamic line ratings, dynamic transformer ratings, power flow controls, topology optimization, advanced conductor technologies, energy storage systems, and demand response. These GETs can enhance system performance individually, but the deployment of multiple GETs together would greatly increase their effect on the grid capacity and stability by removing multiple capacity bottlenecks in parallel. Infrastructure for real-time data acquisition, transmission and analysis is key to successfully deploying GETs but requires further development and commercialization for broader deployment.
Decarbonizing urban residential communities with green hydrogen systems
Community green hydrogen systems, typically consisting of rooftop photovoltaic panels paired with hybrid hydrogen-battery storage, offer urban environments with improved access to clean, on-site energy. However, economically viable pathways for deploying hydrogen storage within urban communities remain unclear. Here we develop a bottom-up energy model linking climate, human behavior and community characteristics to assess the impacts of pathways for deploying community green hydrogen systems in North America from 2030 to 2050. We show that for the same community conditions, the cost difference between the best and worst pathways can be as high as 60%. In particular, the household centralized option emerges as the preferred pathway for most communities. Furthermore, enhancing energy storage demands within these deployment pathways can reduce system design costs up to fourfold. To achieve cost-effective urban decarbonization, the study underscores the critical role of selecting the right deployment pathway and prioritizing the integration of increased energy storage in pathway designs.
Multiple defects renovation and phase reconstruction of reduced-dimensional perovskites via in situ chlorination for efficient deep-blue (454 nm) light-emitting diodes
Deep-blue perovskite light-emitting diodes (PeLEDs) based on reduced-dimensional perovskites (RDPs) still face a few challenges including severe trap-assisted nonradiative recombination, sluggish exciton transfer, and undesirable bathochromic shift of the electroluminescence spectra, impeding the realization of high-performance PeLEDs. Herein, an in situ chlorination (isCl) post-treatment strategy was employed to regulate phase reconstruction and renovate multiple defects of RDPs, leading to superior carrier cooling of 0.88 ps, extraordinary exciton binding energy of 122.53 meV, and higher photoluminescence quantum yield of 60.9% for RDP films with deep-blue emission at 450 nm. The phase regulation is accomplished via fluorine-derived hydrogen bonds that suppress the formation of small-n phases. Multiple defects, including halide vacancies (shallow-state defects) and lead-chloride antisite defects (deep-state defects), are renovated via C=O coordination and hydroxy-group-derived hydrogen bonds. Consequently, deep-blue PeLEDs with a record maximum external quantum efficiency of 6.17% and stable electroluminescence at 454 nm were demonstrated, representing the best-performing deep-blue PeLEDs.
Development of accessible and scalable maize pollen storage technology
The inherent short lifespan of Zea mays (maize, corn) pollen hinders crop improvement and challenges the hybrid seed production required to produce food, fuel, and feed. Decades of scientific effort on maize pollen storage technology have been unable to deliver a widely accessible protocol that works for liters of pollen at a hybrid seed production scale. Here we show how suppressing the pollen cellular respiration rate through refrigeration and optimizing gas exchange within the storage environment are the critical combination of factors for maintaining pollen viability in storage. The common practice of preserving maize pollen by mixing the pollen with talcum powder is critically examined using pollen tube germination testing, electron microscopy of pollen-silk (stigma) interaction, and test pollinations in production environments. These techniques lead to mixing maize pollen collected for storage with anti-clumping carrier compounds, including microcrystalline cellulose. These carriers improve stored pollen flowability during pollination and enable increased seed sets to be obtained from stored pollen. Field testing in maize seed production demonstrates that a wide range of pollen volumes can be stored for up to seven days using low-cost, globally available materials and that stored pollen can achieve seed-set equivalency to fresh pollen.
Responses